You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

78 lines
2.6 KiB

  1. import torch.nn as nn
  2. import torchvision.transforms as transforms
  3. __all__ = ['alexnet']
  4. class AlexNetOWT_BN(nn.Module):
  5. def __init__(self, num_classes=1000):
  6. super(AlexNetOWT_BN, self).__init__()
  7. self.features = nn.Sequential(
  8. nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2,
  9. bias=False),
  10. nn.MaxPool2d(kernel_size=3, stride=2),
  11. nn.BatchNorm2d(64),
  12. nn.ReLU(inplace=True),
  13. nn.Conv2d(64, 192, kernel_size=5, padding=2, bias=False),
  14. nn.MaxPool2d(kernel_size=3, stride=2),
  15. nn.ReLU(inplace=True),
  16. nn.BatchNorm2d(192),
  17. nn.Conv2d(192, 384, kernel_size=3, padding=1, bias=False),
  18. nn.ReLU(inplace=True),
  19. nn.BatchNorm2d(384),
  20. nn.Conv2d(384, 256, kernel_size=3, padding=1, bias=False),
  21. nn.ReLU(inplace=True),
  22. nn.BatchNorm2d(256),
  23. nn.Conv2d(256, 256, kernel_size=3, padding=1, bias=False),
  24. nn.MaxPool2d(kernel_size=3, stride=2),
  25. nn.ReLU(inplace=True),
  26. nn.BatchNorm2d(256)
  27. )
  28. self.classifier = nn.Sequential(
  29. nn.Linear(256 * 6 * 6, 4096, bias=False),
  30. nn.BatchNorm1d(4096),
  31. nn.ReLU(inplace=True),
  32. nn.Dropout(0.5),
  33. nn.Linear(4096, 4096, bias=False),
  34. nn.BatchNorm1d(4096),
  35. nn.ReLU(inplace=True),
  36. nn.Dropout(0.5),
  37. nn.Linear(4096, num_classes)
  38. )
  39. self.regime = {
  40. 0: {'optimizer': 'SGD', 'lr': 1e-2,
  41. 'weight_decay': 5e-4, 'momentum': 0.9},
  42. 10: {'lr': 5e-3},
  43. 15: {'lr': 1e-3, 'weight_decay': 0},
  44. 20: {'lr': 5e-4},
  45. 25: {'lr': 1e-4}
  46. }
  47. normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
  48. std=[0.229, 0.224, 0.225])
  49. self.input_transform = {
  50. 'train': transforms.Compose([
  51. transforms.Scale(256),
  52. transforms.RandomCrop(224),
  53. transforms.RandomHorizontalFlip(),
  54. transforms.ToTensor(),
  55. normalize
  56. ]),
  57. 'eval': transforms.Compose([
  58. transforms.Scale(256),
  59. transforms.CenterCrop(224),
  60. transforms.ToTensor(),
  61. normalize
  62. ])
  63. }
  64. def forward(self, x):
  65. x = self.features(x)
  66. x = x.view(-1, 256 * 6 * 6)
  67. x = self.classifier(x)
  68. return x
  69. def alexnet(**kwargs):
  70. num_classes = kwargs.get( 'num_classes', 1000)
  71. return AlexNetOWT_BN(num_classes)