|
|
- import torch.nn as nn
- import torchvision.transforms as transforms
-
- __all__ = ['alexnet']
-
- class AlexNetOWT_BN(nn.Module):
-
- def __init__(self, num_classes=1000):
- super(AlexNetOWT_BN, self).__init__()
- self.features = nn.Sequential(
- nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2,
- bias=False),
- nn.MaxPool2d(kernel_size=3, stride=2),
- nn.BatchNorm2d(64),
- nn.ReLU(inplace=True),
- nn.Conv2d(64, 192, kernel_size=5, padding=2, bias=False),
- nn.MaxPool2d(kernel_size=3, stride=2),
- nn.ReLU(inplace=True),
- nn.BatchNorm2d(192),
- nn.Conv2d(192, 384, kernel_size=3, padding=1, bias=False),
- nn.ReLU(inplace=True),
- nn.BatchNorm2d(384),
- nn.Conv2d(384, 256, kernel_size=3, padding=1, bias=False),
- nn.ReLU(inplace=True),
- nn.BatchNorm2d(256),
- nn.Conv2d(256, 256, kernel_size=3, padding=1, bias=False),
- nn.MaxPool2d(kernel_size=3, stride=2),
- nn.ReLU(inplace=True),
- nn.BatchNorm2d(256)
- )
- self.classifier = nn.Sequential(
- nn.Linear(256 * 6 * 6, 4096, bias=False),
- nn.BatchNorm1d(4096),
- nn.ReLU(inplace=True),
- nn.Dropout(0.5),
- nn.Linear(4096, 4096, bias=False),
- nn.BatchNorm1d(4096),
- nn.ReLU(inplace=True),
- nn.Dropout(0.5),
- nn.Linear(4096, num_classes)
- )
-
- self.regime = {
- 0: {'optimizer': 'SGD', 'lr': 1e-2,
- 'weight_decay': 5e-4, 'momentum': 0.9},
- 10: {'lr': 5e-3},
- 15: {'lr': 1e-3, 'weight_decay': 0},
- 20: {'lr': 5e-4},
- 25: {'lr': 1e-4}
- }
- normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225])
- self.input_transform = {
- 'train': transforms.Compose([
- transforms.Scale(256),
- transforms.RandomCrop(224),
- transforms.RandomHorizontalFlip(),
- transforms.ToTensor(),
- normalize
- ]),
- 'eval': transforms.Compose([
- transforms.Scale(256),
- transforms.CenterCrop(224),
- transforms.ToTensor(),
- normalize
- ])
- }
-
- def forward(self, x):
- x = self.features(x)
- x = x.view(-1, 256 * 6 * 6)
- x = self.classifier(x)
- return x
-
-
- def alexnet(**kwargs):
- num_classes = kwargs.get( 'num_classes', 1000)
- return AlexNetOWT_BN(num_classes)
|