|
|
- import torch.nn as nn
- import torchvision.transforms as transforms
- from .binarized_modules import BinarizeLinear,BinarizeConv2d
-
- __all__ = ['alexnet_binary']
-
- class AlexNetOWT_BN(nn.Module):
-
- def __init__(self, num_classes=1000):
- super(AlexNetOWT_BN, self).__init__()
- self.ratioInfl=3
- self.features = nn.Sequential(
- BinarizeConv2d(3, int(64*self.ratioInfl), kernel_size=11, stride=4, padding=2),
- nn.MaxPool2d(kernel_size=3, stride=2),
- nn.BatchNorm2d(int(64*self.ratioInfl)),
- nn.Hardtanh(inplace=True),
- BinarizeConv2d(int(64*self.ratioInfl), int(192*self.ratioInfl), kernel_size=5, padding=2),
- nn.MaxPool2d(kernel_size=3, stride=2),
- nn.BatchNorm2d(int(192*self.ratioInfl)),
- nn.Hardtanh(inplace=True),
-
- BinarizeConv2d(int(192*self.ratioInfl), int(384*self.ratioInfl), kernel_size=3, padding=1),
- nn.BatchNorm2d(int(384*self.ratioInfl)),
- nn.Hardtanh(inplace=True),
-
- BinarizeConv2d(int(384*self.ratioInfl), int(256*self.ratioInfl), kernel_size=3, padding=1),
- nn.BatchNorm2d(int(256*self.ratioInfl)),
- nn.Hardtanh(inplace=True),
-
- BinarizeConv2d(int(256*self.ratioInfl), 256, kernel_size=3, padding=1),
- nn.MaxPool2d(kernel_size=3, stride=2),
- nn.BatchNorm2d(256),
- nn.Hardtanh(inplace=True)
-
- )
- self.classifier = nn.Sequential(
- BinarizeLinear(256 * 6 * 6, 4096),
- nn.BatchNorm1d(4096),
- nn.Hardtanh(inplace=True),
- #nn.Dropout(0.5),
- BinarizeLinear(4096, 4096),
- nn.BatchNorm1d(4096),
- nn.Hardtanh(inplace=True),
- #nn.Dropout(0.5),
- BinarizeLinear(4096, num_classes),
- nn.BatchNorm1d(1000),
- nn.LogSoftmax()
- )
-
- #self.regime = {
- # 0: {'optimizer': 'SGD', 'lr': 1e-2,
- # 'weight_decay': 5e-4, 'momentum': 0.9},
- # 10: {'lr': 5e-3},
- # 15: {'lr': 1e-3, 'weight_decay': 0},
- # 20: {'lr': 5e-4},
- # 25: {'lr': 1e-4}
- #}
- self.regime = {
- 0: {'optimizer': 'Adam', 'lr': 5e-3},
- 20: {'lr': 1e-3},
- 30: {'lr': 5e-4},
- 35: {'lr': 1e-4},
- 40: {'lr': 1e-5}
- }
- normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225])
- self.input_transform = {
- 'train': transforms.Compose([
- transforms.Scale(256),
- transforms.RandomCrop(224),
- transforms.RandomHorizontalFlip(),
- transforms.ToTensor(),
- normalize
- ]),
- 'eval': transforms.Compose([
- transforms.Scale(256),
- transforms.CenterCrop(224),
- transforms.ToTensor(),
- normalize
- ])
- }
-
- def forward(self, x):
- x = self.features(x)
- x = x.view(-1, 256 * 6 * 6)
- x = self.classifier(x)
- return x
-
-
- def alexnet_binary(**kwargs):
- num_classes = kwargs.get( 'num_classes', 1000)
- return AlexNetOWT_BN(num_classes)
|