|
|
- import torch
- import torch.nn as nn
- import torchvision.transforms as transforms
- from torch.autograd import Function
- from .binarized_modules import BinarizeLinear,BinarizeConv2d
-
-
-
- class VGG_Cifar10(nn.Module):
-
- def __init__(self, num_classes=1000):
- super(VGG_Cifar10, self).__init__()
- self.infl_ratio=3;
- self.features = nn.Sequential(
- BinarizeConv2d(3, 128*self.infl_ratio, kernel_size=3, stride=1, padding=1,
- bias=True),
- nn.BatchNorm2d(128*self.infl_ratio),
- nn.Hardtanh(inplace=True),
-
- BinarizeConv2d(128*self.infl_ratio, 128*self.infl_ratio, kernel_size=3, padding=1, bias=True),
- nn.MaxPool2d(kernel_size=2, stride=2),
- nn.BatchNorm2d(128*self.infl_ratio),
- nn.Hardtanh(inplace=True),
-
-
- BinarizeConv2d(128*self.infl_ratio, 256*self.infl_ratio, kernel_size=3, padding=1, bias=True),
- nn.BatchNorm2d(256*self.infl_ratio),
- nn.Hardtanh(inplace=True),
-
-
- BinarizeConv2d(256*self.infl_ratio, 256*self.infl_ratio, kernel_size=3, padding=1, bias=True),
- nn.MaxPool2d(kernel_size=2, stride=2),
- nn.BatchNorm2d(256*self.infl_ratio),
- nn.Hardtanh(inplace=True),
-
-
- BinarizeConv2d(256*self.infl_ratio, 512*self.infl_ratio, kernel_size=3, padding=1, bias=True),
- nn.BatchNorm2d(512*self.infl_ratio),
- nn.Hardtanh(inplace=True),
-
-
- BinarizeConv2d(512*self.infl_ratio, 512, kernel_size=3, padding=1, bias=True),
- nn.MaxPool2d(kernel_size=2, stride=2),
- nn.BatchNorm2d(512),
- nn.Hardtanh(inplace=True)
-
- )
- self.classifier = nn.Sequential(
- BinarizeLinear(512 * 4 * 4, 1024, bias=True),
- nn.BatchNorm1d(1024),
- nn.Hardtanh(inplace=True),
- #nn.Dropout(0.5),
- BinarizeLinear(1024, 1024, bias=True),
- nn.BatchNorm1d(1024),
- nn.Hardtanh(inplace=True),
- #nn.Dropout(0.5),
- BinarizeLinear(1024, num_classes, bias=True),
- nn.BatchNorm1d(num_classes, affine=False),
- nn.LogSoftmax()
- )
-
- self.regime = {
- 0: {'optimizer': 'Adam', 'betas': (0.9, 0.999),'lr': 5e-3},
- 40: {'lr': 1e-3},
- 80: {'lr': 5e-4},
- 100: {'lr': 1e-4},
- 120: {'lr': 5e-5},
- 140: {'lr': 1e-5}
- }
-
- def forward(self, x):
- x = self.features(x)
- x = x.view(-1, 512 * 4 * 4)
- x = self.classifier(x)
- return x
-
-
- def vgg_cifar10_binary(**kwargs):
- num_classes = kwargs.get( 'num_classes', 10)
- return VGG_Cifar10(num_classes)
|