from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.autograd import Variable from models.binarized_modules import BinarizeLinear,BinarizeConv2d from models.binarized_modules import Binarize,HingeLoss # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 256)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=100, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.001)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--gpus', default=3, help='gpus used for training - e.g 0,1,3') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} train_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.test_batch_size, shuffle=True, **kwargs) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.infl_ratio=3 self.fc1 = BinarizeLinear(784, 2048*self.infl_ratio) self.htanh1 = nn.Hardtanh() self.bn1 = nn.BatchNorm1d(2048*self.infl_ratio) self.fc2 = BinarizeLinear(2048*self.infl_ratio, 2048*self.infl_ratio) self.htanh2 = nn.Hardtanh() self.bn2 = nn.BatchNorm1d(2048*self.infl_ratio) self.fc3 = BinarizeLinear(2048*self.infl_ratio, 2048*self.infl_ratio) self.htanh3 = nn.Hardtanh() self.bn3 = nn.BatchNorm1d(2048*self.infl_ratio) self.fc4 = nn.Linear(2048*self.infl_ratio, 10) self.logsoftmax=nn.LogSoftmax() self.drop=nn.Dropout(0.5) def forward(self, x): x = x.view(-1, 28*28) x = self.fc1(x) x = self.bn1(x) x = self.htanh1(x) x = self.fc2(x) x = self.bn2(x) x = self.htanh2(x) x = self.fc3(x) x = self.drop(x) x = self.bn3(x) x = self.htanh3(x) x = self.fc4(x) return self.logsoftmax(x) model = Net() if args.cuda: torch.cuda.set_device(3) model.cuda() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=args.lr) def train(epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): if args.cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data), Variable(target) optimizer.zero_grad() output = model(data) loss = criterion(output, target) if epoch%40==0: optimizer.param_groups[0]['lr']=optimizer.param_groups[0]['lr']*0.1 optimizer.zero_grad() loss.backward() for p in list(model.parameters()): if hasattr(p,'org'): p.data.copy_(p.org) optimizer.step() for p in list(model.parameters()): if hasattr(p,'org'): p.org.copy_(p.data.clamp_(-1,1)) if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) def test(): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: if args.cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data), Variable(target) output = model(data) test_loss += criterion(output, target).item() # sum up batch loss pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability correct += pred.eq(target.data.view_as(pred)).cpu().sum() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) for epoch in range(1, args.epochs + 1): train(epoch) test() if epoch%40==0: optimizer.param_groups[0]['lr']=optimizer.param_groups[0]['lr']*0.1