import torch.nn as nn
|
|
import torchvision.transforms as transforms
|
|
|
|
|
|
class AlexNetOWT_BN(nn.Module):
|
|
|
|
def __init__(self, num_classes=1000):
|
|
super(AlexNetOWT_BN, self).__init__()
|
|
self.features = nn.Sequential(
|
|
nn.Conv2d(3, 128, kernel_size=3, stride=1, padding=1,
|
|
bias=False),
|
|
nn.BatchNorm2d(128),
|
|
nn.ReLU(inplace=True),
|
|
|
|
nn.Conv2d(128, 128, kernel_size=3, padding=1, bias=False),
|
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
|
nn.ReLU(inplace=True),
|
|
nn.BatchNorm2d(128),
|
|
|
|
nn.Conv2d(128, 256, kernel_size=3, padding=1, bias=False),
|
|
nn.ReLU(inplace=True),
|
|
nn.BatchNorm2d(256),
|
|
|
|
nn.Conv2d(256, 256, kernel_size=3, padding=1, bias=False),
|
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
|
nn.ReLU(inplace=True),
|
|
nn.BatchNorm2d(256),
|
|
|
|
nn.Conv2d(256, 512, kernel_size=3, padding=1, bias=False),
|
|
nn.ReLU(inplace=True),
|
|
nn.BatchNorm2d(512),
|
|
|
|
nn.Conv2d(512, 512, kernel_size=3, padding=1, bias=False),
|
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
|
nn.ReLU(inplace=True),
|
|
nn.BatchNorm2d(512),
|
|
)
|
|
self.classifier = nn.Sequential(
|
|
nn.Linear(512 * 4 * 4, 1024, bias=False),
|
|
nn.BatchNorm1d(1024),
|
|
nn.ReLU(inplace=True),
|
|
nn.Dropout(0.5),
|
|
nn.Linear(1024, 1024, bias=False),
|
|
nn.BatchNorm1d(1024),
|
|
nn.ReLU(inplace=True),
|
|
nn.Dropout(0.5),
|
|
nn.Linear(1024, num_classes)
|
|
nn.LogSoftMax()
|
|
)
|
|
|
|
self.regime = {
|
|
0: {'optimizer': 'SGD', 'lr': 1e-2,
|
|
'weight_decay': 5e-4, 'momentum': 0.9},
|
|
10: {'lr': 5e-3},
|
|
15: {'lr': 1e-3, 'weight_decay': 0},
|
|
20: {'lr': 5e-4},
|
|
25: {'lr': 1e-4}
|
|
}
|
|
|
|
def forward(self, x):
|
|
x = self.features(x)
|
|
x = x.view(-1, 512 * 4 * 4)
|
|
x = self.classifier(x)
|
|
return x
|
|
|
|
|
|
def model(**kwargs):
|
|
num_classes = kwargs.get( 'num_classes', 1000)
|
|
return AlexNetOWT_BN(num_classes)
|