You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 

80 lines
2.7 KiB

import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torch.autograd import Function
from .binarized_modules import BinarizeLinear,BinarizeConv2d
class VGG_Cifar10(nn.Module):
def __init__(self, num_classes=1000):
super(VGG_Cifar10, self).__init__()
self.infl_ratio=3;
self.features = nn.Sequential(
BinarizeConv2d(3, 128*self.infl_ratio, kernel_size=3, stride=1, padding=1,
bias=True),
nn.BatchNorm2d(128*self.infl_ratio),
nn.Hardtanh(inplace=True),
BinarizeConv2d(128*self.infl_ratio, 128*self.infl_ratio, kernel_size=3, padding=1, bias=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.BatchNorm2d(128*self.infl_ratio),
nn.Hardtanh(inplace=True),
BinarizeConv2d(128*self.infl_ratio, 256*self.infl_ratio, kernel_size=3, padding=1, bias=True),
nn.BatchNorm2d(256*self.infl_ratio),
nn.Hardtanh(inplace=True),
BinarizeConv2d(256*self.infl_ratio, 256*self.infl_ratio, kernel_size=3, padding=1, bias=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.BatchNorm2d(256*self.infl_ratio),
nn.Hardtanh(inplace=True),
BinarizeConv2d(256*self.infl_ratio, 512*self.infl_ratio, kernel_size=3, padding=1, bias=True),
nn.BatchNorm2d(512*self.infl_ratio),
nn.Hardtanh(inplace=True),
BinarizeConv2d(512*self.infl_ratio, 512, kernel_size=3, padding=1, bias=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.BatchNorm2d(512),
nn.Hardtanh(inplace=True)
)
self.classifier = nn.Sequential(
BinarizeLinear(512 * 4 * 4, 1024, bias=True),
nn.BatchNorm1d(1024),
nn.Hardtanh(inplace=True),
#nn.Dropout(0.5),
BinarizeLinear(1024, 1024, bias=True),
nn.BatchNorm1d(1024),
nn.Hardtanh(inplace=True),
#nn.Dropout(0.5),
BinarizeLinear(1024, num_classes, bias=True),
nn.BatchNorm1d(num_classes, affine=False),
nn.LogSoftmax()
)
self.regime = {
0: {'optimizer': 'Adam', 'betas': (0.9, 0.999),'lr': 5e-3},
40: {'lr': 1e-3},
80: {'lr': 5e-4},
100: {'lr': 1e-4},
120: {'lr': 5e-5},
140: {'lr': 1e-5}
}
def forward(self, x):
x = self.features(x)
x = x.view(-1, 512 * 4 * 4)
x = self.classifier(x)
return x
def vgg_cifar10_binary(**kwargs):
num_classes = kwargs.get( 'num_classes', 10)
return VGG_Cifar10(num_classes)