import torch
|
|
import numpy as np
|
|
import cv2, os, sys
|
|
from torch.utils.data import Dataset
|
|
from matplotlib import pyplot as plt
|
|
from torch.utils.data import ConcatDataset, DataLoader, Subset
|
|
import torch.nn as nn
|
|
import torchvision.transforms as transforms
|
|
from torchvision.datasets import DatasetFolder
|
|
from PIL import Image
|
|
from BinaryNetpytorch.models.binarized_modules import BinarizeLinear,BinarizeConv2d
|
|
from BinaryNetpytorch.models.binarized_modules import Binarize,HingeLoss
|
|
import seaborn as sns
|
|
import random
|
|
batch_size = 8
|
|
num_epoch = 10
|
|
|
|
seed = 777
|
|
torch.manual_seed(seed)
|
|
torch.cuda.manual_seed(seed)
|
|
torch.cuda.manual_seed_all(seed)
|
|
np.random.seed(seed)
|
|
random.seed(seed)
|
|
torch.backends.cudnn.benchmark = False
|
|
torch.backends.cudnn.deterministic = True
|
|
|
|
|
|
train_tfm = transforms.Compose([
|
|
#transforms.Grayscale(),
|
|
#transforms.RandomHorizontalFlip(),
|
|
#transforms.RandomResizedCrop((40,30)),
|
|
#transforms.RandomCrop((40,30)),
|
|
#transforms.RandomHorizontalFlip(),
|
|
transforms.ToTensor(),
|
|
#transforms.RandomResizedCrop((40,30)),
|
|
#transforms.TenCrop((40,30)),
|
|
#transforms.Normalize(0.5,0.5),
|
|
])
|
|
|
|
test_tfm = transforms.Compose([
|
|
#transforms.Grayscale(),
|
|
transforms.ToTensor()
|
|
])
|
|
class Classifier(nn.Module):
|
|
def __init__(self):
|
|
super(Classifier, self).__init__()
|
|
|
|
self.cnn_layers = nn.Sequential(
|
|
# BinarizeConv2d(in_channels=1, out_channels=128, kernel_size=9, padding=9//2, bias=False),
|
|
# nn.BatchNorm2d(128),
|
|
# nn.ReLU(),
|
|
# BinarizeConv2d(in_channels=128, out_channels=64, kernel_size=1, padding=1//2, bias=False),
|
|
# nn.BatchNorm2d(64),
|
|
#input_size(1,30,40)
|
|
BinarizeConv2d(1, 128, 3, 1), #output_size(16,28,38)
|
|
nn.BatchNorm2d(128),
|
|
nn.ReLU(),
|
|
#nn.Dropout(0.2),
|
|
nn.MaxPool2d(kernel_size = 2), #output_size(16,14,19)
|
|
|
|
BinarizeConv2d(128, 64, 3, 1), #output_size(24,12,17)
|
|
nn.BatchNorm2d(64),
|
|
nn.ReLU(),
|
|
#nn.Dropout(0.2),
|
|
nn.MaxPool2d(kernel_size = 2), #output_size(24,6,8)
|
|
|
|
BinarizeConv2d(64, 32, 3, 1), #output_size(32,4,6)
|
|
nn.BatchNorm2d(32),
|
|
nn.ReLU(),
|
|
#nn.Dropout(0.2),
|
|
nn.MaxPool2d(kernel_size = 2), #ouput_size(32,2,3)
|
|
#nn.LogSoftmax(),
|
|
BinarizeConv2d(32, 3, (3,2), 1) #ouput_size(4,2,3) without max :(32,24,34)
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
x = self.cnn_layers(x)
|
|
#x = x.flatten(1)
|
|
#x = self.fc_layers(x)
|
|
#print(x.shape)
|
|
x = x.view(x.size(0), -1)
|
|
#print(x.shape)
|
|
#x = nn.LogSoftmax(x)
|
|
#print(x)
|
|
|
|
return x
|
|
|
|
def main():
|
|
train_set = DatasetFolder("./dataset/data_0711/grideye/train", loader=lambda x: Image.open(x), extensions="bmp", transform=train_tfm)
|
|
test_set = DatasetFolder("./dataset/data_0711/grideye/test", loader=lambda x: Image.open(x), extensions="bmp", transform=test_tfm)
|
|
val_set = DatasetFolder("./dataset/data_0711/grideye/train", loader=lambda x: Image.open(x), extensions="bmp", transform=test_tfm)
|
|
|
|
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True)
|
|
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=True)
|
|
val_loader = DataLoader(val_set, batch_size=batch_size, shuffle=True)
|
|
|
|
save_path = 'models.ckpt'
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model = Classifier().to(device)
|
|
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)
|
|
criterion = nn.CrossEntropyLoss()
|
|
best_accuracy = 0.0
|
|
for epoch in range(num_epoch):
|
|
running_loss = 0.0
|
|
total = 0
|
|
correct = 0
|
|
for i, data in enumerate(train_loader):
|
|
inputs, labels = data
|
|
inputs = inputs.to(device)
|
|
labels = labels.to(device)
|
|
#print(labels)
|
|
optimizer.zero_grad()
|
|
|
|
outputs = model(inputs)
|
|
#print(outputs.shape)
|
|
|
|
loss = criterion(outputs, labels)
|
|
loss.backward()
|
|
|
|
for p in list(model.parameters()):
|
|
if hasattr(p,'org'):
|
|
p.data.copy_(p.org)
|
|
|
|
optimizer.step()
|
|
|
|
for p in list(model.parameters()):
|
|
if hasattr(p,'org'):
|
|
p.org.copy_(p.data.clamp_(-1,1))
|
|
|
|
running_loss += loss.item()
|
|
total += labels.size(0)
|
|
_,predicted = torch.max(outputs.data,1)
|
|
#print(predicted)
|
|
#print("label",labels)
|
|
correct += (predicted == labels).sum().item()
|
|
train_acc = correct / total
|
|
|
|
print(f"[ Train | {epoch + 1:03d}/{num_epoch:03d} ] loss = {running_loss:.5f}, acc = {train_acc:.5f}")
|
|
|
|
model.eval()
|
|
with torch.no_grad():
|
|
correct = 0
|
|
total = 0
|
|
for i, data in enumerate(val_loader):
|
|
inputs, labels = data
|
|
inputs = inputs.to(device)
|
|
labels = labels.to(device)
|
|
outputs = model(inputs)
|
|
_,predicted = torch.max(outputs.data,1)
|
|
total += labels.size(0)
|
|
correct += (predicted == labels).sum().item()
|
|
val_acc = correct / total
|
|
|
|
if val_acc > best_accuracy:
|
|
best_accuracy = val_acc
|
|
torch.save(model.state_dict(), save_path)
|
|
print("Save Model")
|
|
|
|
|
|
print(f"[ Val | {epoch + 1:03d}/{num_epoch:03d} ] acc = {val_acc:.5f}")
|
|
|
|
model = Classifier().to(device)
|
|
model.load_state_dict(torch.load(save_path))
|
|
model.eval()
|
|
stat = np.zeros((3,3))
|
|
with torch.no_grad():
|
|
correct = 0
|
|
total = 0
|
|
print(model)
|
|
for i, data in enumerate(test_loader):
|
|
inputs, labels = data
|
|
inputs = inputs.to(device)
|
|
labels = labels.to(device)
|
|
outputs = model(inputs)
|
|
#print(outputs.data)
|
|
_,predicted = torch.max(outputs.data,1)
|
|
#print(predicted)
|
|
total += labels.size(0)
|
|
correct += (predicted == labels).sum().item()
|
|
for k in range(len(predicted)):
|
|
if predicted[k] != labels[k]:
|
|
img = inputs[k].mul(255).byte()
|
|
img = img.cpu().numpy().squeeze(0)
|
|
img = np.moveaxis(img, 0, -1)
|
|
|
|
predict = predicted[k].cpu().numpy()
|
|
label = labels[k].cpu().numpy()
|
|
path = "test_result/predict:"+str(predict)+"_labels:"+str(label)+".jpg"
|
|
stat[int(label)][int(predict)] += 1
|
|
ax = sns.heatmap(stat, linewidth=0.5)
|
|
plt.xlabel('Prediction')
|
|
plt.ylabel('Label')
|
|
plt.savefig('heatmap.jpg')
|
|
#print(predicted)
|
|
#print("labels:",labels)
|
|
print('Test Accuracy:{} %'.format((correct / total) * 100))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|