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Abstract 
In quest to execute emerging deep learning algorithms at 

edge devices, developing low-power and low-latency deep 

learning accelerators (DLAs) have become top priority. To 

achieve this goal, data processing techniques in sensor and 

memory utilizing the array structure have drawn much 

attention. Processing-in-sensor (PIS) solutions could reduce 

data transfer; computing-in-memory (CIM) macros could 

reduce memory access and intermediate data movement. We 

propose a new architecture to integrate PIS and CIM to realize 

low-power DLA. The advantages of using these techniques and 

the challenges from system point-of-view are discussed. 
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Introduction 
As convolutional neural network (CNN) use has expanded, 

demand for computing resources and consequent memory 

costs have grown significantly. Numerous works over the past 

few years have sought to develop a DLA [1–3], with the goal 

of effectively reducing the time complexity of matrix–vector 

multiplication [4–6]. To deploy CNNs in edge devices, high-

throughput low-power DLA solutions that can execute 

emerging deep-learning algorithms has become mainstream.  

A growing body of research seeks to utilize in situ analog 

computing to break the memory wall and reduce the 

communication overhead in DLA designs. Recent works have 

proven that computing-in-memory (CIM) macros, including 

in-memory computing (IMC) and near-memory computing 

(NMC), can break the von Neumann bottleneck to achieve high 

energy efficiency [7–13]. PIS shares the same design concept 

with CIM but focuses more on high-resolution computing, 

early detection, and image filtering [14, 15]. By conducting 

specific image processing before delivering data to the backend 

processor, bandwidth, power consumption, and latency of data 

transfer can be reduced effectively [14–17]. 

In this paper, we propose a novel architecture (Fig. 1) that 

integrates PIS and CIM into a low-power CNN accelerator for 

edge devices. The advantages and challenges are also outlined.  

Computing-In-Memory 
For edge devices, reducing the latency and reducing the 

energy consumption of multiply-and-accumulate (MAC) 

operations are two crucial challenges. CIM (Fig. 2) has been 

proposed to meet these requirements. Fig. 3 shows how to 

perform MAC operations using CIM. The multiply operation 

occurs in the memory cell when the word-line (WL) turns 

on/off and the product value is IMC. Subsequently, the bit-line 

(BL) sums up every IMC for the accumulation operation.  

Both volatile and nonvolatile CIM macros have 

demonstrated MAC operations from binary [7, 18] to multibit 

precision [11, 12] (Fig. 4). To support more complex CNN 

algorithms in order to classify more complicated datasets, CIM 

should be capable of precise MAC operations through 

software/hardware co-design. Convolution is more complex in 

CIM than in a conventional digital design. The MAC of an 

input feature map convolution with a kernel must be 

decomposed to satisfy the CIM constraints. Moreover, the 

behavior of the multibit sensing amplifier must be considered.  

Multibit CIM macros still face several challenges if they are 

to be integrated with high-accuracy CNN systems. First, 

multibit output precision reduces the sensing margin of each 

MAC value, which increases the error of the sensing amplifier 

output. Second, the computation of a MAC value in a memory 

array causes a large bit-line current, which increases not only 

power consumption but also the sensing amplifier input-offset. 

Finally, the CIM architecture computes the MAC in the analog 

domain while the peripheral circuits are digital. Consequently, 

the power bottleneck lies in the analog-to-digital conversion 

(ADC) and digital-to-analog conversion (DAC) at the I/O of 

the CIM macro. To effectively improve power efficiency, 

adaptive DAC and ADC must be considered [19]. 

Processing-In-Sensor 
Recently, CMOS image sensors (CIS) with specific PIS 

functions for AI applications (see Fig. 5) have attracted 

attention. An architecture in [14] proposed an analog–digital 

hybrid image filtering in-sensor to reduce energy consumption. 

The imager demonstrated in [20] implemented GOPS column-

parallel processing elements using 3D-stacked technology for 

high-speed spatiotemporal information extraction. A column-

parallel computation scheme was presented in [15] for local 

binary pattern and edge extraction. Always-on motion 

detection cameras [16, 17] also benefit from PIS of feature 

extraction within subsampled or subarray segmentation. 

Research on next-generation AI vision chips is likely to 

emphasize hardware complexity to optimize data transfer and 

computation between the sensor and processor. 

To achieve high speed and high resolution in the first 

computation layer for CNN applications, we propose a real-

time analog-domain convolution technique, as presented in Fig. 

6. We can use 4-bit or greater weights while maintaining the 

CIFAR-10 accuracy, as shown in Fig. 7. Therefore, 

programmable 3 � 3 kernels with 4-bit weights and tunable-

resolutions for quantization of the convolution results were 

implemented for the general CNN model in this design. The 

convolution and readout were achieved in the proposed 

convolutional CIS (C2IS) simultaneously. Furthermore, the 

required frame buffer, computation energy, and high-bit MAC 

operations in the following CNN processor could be mitigated. 

While showing great potential, there are still challenges in 

the development of PIS. Due to the required extra circuits for 

in-sensor processing, the tradeoff between image quality and 

featuring function needs to be considered. Moreover, the 

achievable computation complexity of PIS is limited and 

suitable only for the well-defined application-driven 

architectures instead of general purpose. 

Conclusion 
CIM and PIS have shown great potential to increase energy 

efficiency while raising the resolution of CNNs for the future 

AI edge devices. Software/hardware co-designs such as 

adopting novel dataflow control and emerging crossbar-

friendly algorithms are essential to the road to success.  
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Fig.1 Comparison of conventional DLA with the  

proposed architecture integrated with CIM and PIS�
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Fig. 6 Architecture of the real-time analog-domain convolution CIS 
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Fig. 5 Conventional image processing flow vs. CIS with specific PIS 

function for AI applications�

�
Fig. 2 CIM architecture [13] 

�
Fig. 4 CIM precision evolution 

�
Fig. 7 Analysis of CIFAR-10 accuracy degradation 

with different weight resolution on ResNet-18 

�
Fig. 3 MAC operation in CIM and the difference  

between IMC and NMC [12] 
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