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ABSTRACT
The bottleneck between the limited memory bandwidth and high
speed processing demands is the main cause of problems associated
with high volume of data transfers in data-intensive applications.
As a possible remedy to these issues, computing-in-memory (CiM)
enables a subset of logic and arithmetic operations to be performed
where the data resides, i.e., inside the memory. Various CiM designs
have been proposed to date, based on different technologies. Given
the variety of options available, picking the right design option
for a system/application can be a complex task. When choosing a
CiM design, it is important to establish evaluation conditions that
are as uniform as possible to make a fair choice between available
design options. In this paper, we describe a methodology for an
uniform benchmarking of CiM designs. Our approach evaluates
devices/circuits, arrays and the overall impact of CiM to a system
with a framework based on Eva-CiM. As a case study, we analyze
the array-level performance of 7 recent CiM designs implemented
with SRAM, DRAM, FeFET-RAM, STT-MRAM, SOT-MRAM, and
RRAM. After we identify that the FeFET-RAM-based design shows
promising energy and delay savings at the array level, we carry
out a system level evaluation showing that FeFET-RAM-based CiM
outperforms a CMOS SRAM CiM baseline by an average of 60%
across a set of 17 benchmarks (with respect to energy savings). Re-
garding speedups, both technologies offer virtually the same benefit
of about ∼1.5× when compared to a situation where processing
does not happen in memory.
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1 INTRODUCTION
The rise of Big Data has brought data-intensive applications to
prominence — these applications demand an ever high volume of
information storage and processing. Data-intensive applications are
challenging to address with von Neumann architectures [1]. More
precisely, data movement between memory and processing units
may lead computing systems to hit a “memory wall" where the
overall system performance is limited by the memory bandwidth
rather than the central processing unit (CPU) speed [2]. Moreover,
larger latencies associatedwith high volumes of data transfers result
in higher energy consumption overhead. Computing-in-memory
(CiM) is a potential solution to the problems associated with the
“memory wall” in von Neumann architectures. CiM enables a subset
of logic and arithmetic operations to be performed where the data
resides, i.e., inside the memory. Various CiM designs for on-chip
memories (i.e., CPU caches) have been proposed to date, e.g., [3–6],
which can provide support to different data-intensive applications.

To this end, CPU caches are often based on complementary
metal–oxide–semiconductor (CMOS) technology. CMOS caches
usually employ 6T- static random-access memory (SRAM) cells,
which have notably low density and high leakage power, further
aggravating the problem of high energy consumption in modern
computer systems. Memories based on beyond-CMOS, emerging
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technologies are alternatives to building denser and more energy
efficient memories. For instance, spin-transfer torque magnetoresis-
tive random access memory (STT-MRAM), spin-orbit torquemagne-
toresistive random access memory (SOT-MRAM), resistive random-
access memory (RRAM), and ferroelectric field effect transistor-
based random-access memory (FeFET-RAM) offer high integra-
tion density. Since these memories also offer the benefits of non-
volatility, no power supply is needed to preserve information stored
in their bit cells, resulting in much lower leakage when compared
to SRAM. Various CiM designs based on emerging technologies
have been proposed to-date, e.g., [7–15].

Given the variety of technologies and CiM designs available,
picking the option that provides maximum performance and en-
ergy savings can be a complex task. Furthermore, as the memory
hierarchy consists of different levels, i.e., L1, L2, L3 caches, aside
from the main memory, different data-intensive applications are ex-
pected to benefit differently from CiM due to their distinct memory
access patterns and the size of their workloads. When choosing a
CiM design, it is important that we consider all the options avail-
able under conditions that are as uniform as possible. Namely, to
ensure a uniform benchmarking for CiM designs, the technology
node, memory size, CiM location in the memory hierarchy, etc.
should be identical. In this regard, benchmarking methodologies,
e.g., [10, 16, 17], are helpful to evaluate different CiM architectures
considering figures-of-merit (FoMs) such as energy consumption,
latency and density, as they allow for CiM evaluation when the
designs are operating under similar conditions.

In this paper, we describe a strategy for uniform benchmarking
of CiM designs based on different memory technologies. We follow
a bottom-up methodology, i.e., from device to system, as illustrated
in Fig. 1. We divide the benchmarking stages into phases 1 through
3 for ease of explanation (in Fig. 1 and also in Sec. 3). In essence,
phase 1 consists of simulating a CiM design at the memory cell level,
which takes technology models and the netlists for CiM circuits as
the inputs, and leverages SPICE simulations to generate energy and
delay results for the evaluated designs. Phase 2, in turn, takes into
account the memory structure and organization, beside technology
to generate energy and delay results at the array/memory bank
level (with tools like NVSIM [18] or DESTINY [19]). The results
from phase 2 are used in phase 3, which produces an estimate of
energy and delay at the application level, taking into account array-
level data. For phase 3, a comprehensive evaluation framework,
Eva-CiM [17], is employed to analyze the CiM-capable instructions
by capturing memory accesses and dependency-aware ISA traces.

We further present benchmarking results obtained with our
uniform benchmarking approach for seven different memory tech-
nologies. Specifically, we comprehensively analyze the array-level
performance of seven recent CiM designs implementedwith volatile
memories including SRAM [20] and DRAM [21] and non-volatile
memories such as FeFET-RAM [12], STT-MRAM [9, 10] (with 2 dif-
ferent implementations), SOT-MRAM [9], and RRAM [22]. After we
identify that the FeFET-RAM-based design [12] shows promising
energy and delay savings at the array level, we perform a system
level evaluation using the Eva-CiM [17] framework for this design
and a SRAM-CiM baseline.
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Figure 1: The high level view of our bottom-up approach for uni-
form benchmarking of CiM designs.
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Figure 2: (a)A traditional computing, (b) a near-memory computing
and a (c) computing-in-memory architectures.

2 BACKGROUND AND RELATEDWORK
In this section, we discuss the terminology associated with CiM
and provide a brief review of related work on the topic of CiM and
emerging memory benchmarking.

2.1 Computing-in-Memory
In recent years, different approaches have emerged to address the
overhead associated with data transfers in traditional computing
systems (Fig. 2(a)). These approaches can generally be classified
into two categories: near-memory processing (NMP, illustrated
in Fig. 2(b)) and computing-in-memory (CiM, illustrated in Fig.
2(c)). With NMP, processing units (PUs) are placed close to the
memory architecture, e.g., as proposed in [23, 24]. While NMP
can leverage parallelism by exploiting the large memory internal
bandwidth, the integration of density-optimized main memory
and performance-optimized PUs on the same die may not be cost-
effective due to fabrication challenges [25]. CiM, in turn, leverages
changes in either the structure ofmemory cells or peripheral circuits
to perform in situ computation inmemory, i.e., at the array level [12].
By doing so, data transfers between a processor and the memory
can be drastically reduced, which helps to save energy and shorten
latency incurred by data transfers for a system that runs data-
intensive applications.
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2.2 Related Work
The variety of technologies and applications make the benchmark-
ing of non-volatile memories and CiM designs from the device to
the system level a non-trivial task. For instance, [26, 27] focus on
benchmarking memories based on either CMOS and non-volatile
emerging technologies. Their comparisons are carried out at cell
and array levels, which gives us important insights as to what
technologies might be more advantageous at several levels of the
memory hierarchy (i.e., L1/L2/L3 caches, or main memory). How-
ever, as the focus of [26, 27] is not on evaluating CiM designs, there
is still a need for a more broad benchmarking approach that looks
at non-traditional architectures (e.g., the CiM) and measures their
impact at the system and application levels.

In this regard, [16] proposes an evaluation flow for Deep Neu-
ral Networks (DNN) acceleration based on different technologies.
Digital and analog CiM platforms are compared. Similar to the
methodology described in this paper, [16] leverages device mod-
els in SPICE simulations. A 256×256 memory sub-array for each
technology is simulated (including their respective CiM circuits),
employing a 45 nm technology node. The SPICE simulation results
provide inputs for simulation at a higher level, i.e., for a memory
of 16Mbit size, using customized versions of the NVSIM [18] and
CACTI [28] tools. A positive point of [16] is that it employs the same
technology node and array size across all designs, which ensure
uniform conditions for benchmarking. However, the methodology
focuses only on CiM for DNN acceleration. In other words, although
some designs, e.g., [10], could be used in a more general context,
there is no evaluation for applications other than DNN acceleration.
Furthermore, benchmarking the impact of CiM to the entire system
is out of scope of their work.

The methodology described in this paper uses a similar approach
as [16] for cell and array-level benchmarking (represented as phases
1 and 2 in Fig. 1). For system-level evaluation (phase 3), we rely on
the framework of Eva-CiM [17] — a tool that enables evaluation of
the impact of CiMwith respect to system’s energy consumption and
performance, for a varied set of applications. A complete description
of the phases of our benchmarking flow is given in Sec. 3, and
relevant benchmarking results are presented in Sec. 4.

3 BENCHMARKING METHODOLOGY
In this section, we describe our bottom-upmethodology for uniform
benchmarking of CiM designs.

3.1 Cell level
Our CiM benchmarking evaluates figures-of-merit (FoM) such as
energy and latency for different types of memory accesses — read,
write, and compute — with CiM designs based on different technolo-
gies (phase 1 in Fig. 1). While the read and write accesses are similar
to the accesses performed in regular RAM, the compute access
emulates the logic/arithmetic CiM operations at the bitline level,
which happens when two wordlines are asserted simultaneously
[4, 10, 12, 29]. In order to measure FoMs for read, write, and compute
at the cell level, we leverage SPICE simulations that include both
the memory cell and the CiM peripheral circuitry contributions.

To evaluate memory cells, we leverage CMOS and emerging
memories based on the device models of [18, 30–32]. Such device
models may be based on either technology computer-aided design

(TCAD) simulations or experimental data from real devices. To
evaluate CiM peripheral circuitry, we implement customized
sense amplifiers and adders at the peripheral circuitry for selected
CiM designs, i.e., SRAM [20], DRAM [21], FeFET-RAM [12], STT-
MRAM [9, 10] (2 different implementations), SOT-MRAM [9], and
RRAM [22]. The results of the evaluation at the cell level (for both
the memory and CiM circuitry components) are input to phase 2 of
our benchmarking methodology to estimate array-level FoMs.

3.2 Array level
In phase 2 of our benchmarking methodology (see Fig. 1), we eval-
uate different CiM designs at the array level. For this purpose, we
leverage DESTINY [19], and CACTI [28], which are memory sim-
ulation tools. DESTINY and NVSIM [18] are used for simulation
of memories based on emerging technologies, and CACTI is used
for CMOS-based memories. Importantly, DESTINY and NVSIM are
built from the exact same framework. In fact, DESTINY can be con-
sidered as an extension of NVSIM with additional features, e.g. the
support to 3D memories, which is why we chose to use DESTINY
for implementing the phase 2 of our benchmarking methodology1.

Note that DESTINY and CACTI tools do not support the evalua-
tion of CiM designs and the FeFET memory cells [12] by default. For
this reason, we have made modifications to the source code of these
tools to enable support to CiM and FeFET-RAM evaluation. For
instance, the latency, energy and leakage power of the CiM periph-
eral circuitry measured with SPICE simulations is included within
a look-up structure inside the DESTINY/ CACTI source codes to
specify customized sense amplifiers. Furthermore, for the FeFET
technology, a new template for a memory cell that has separate read
and write paths, with voltage-based writing mechanism is created
inside the DESTINY framework.With thesemodifications, the FoMs
at the array level include the leakage power, read/write/compute la-
tency, and read/write/compute dynamic energy. Compute memory
accesses are categorized into Boolean logic or word-wise addition.

The modified DESTINY and CACTI tools take two input files,
i.e., one file for thememory cell, and another file for thememory
structure. In the memory cell file, we specify the FoMs obtained
from the cell-level evaluation. Furthermore, some device-specific
parameters are required (e.g., read and write voltages), which are
based on the device models [18, 30–32]. The area of the memory cell
(in 𝐹 2) is also provided for estimating the total array area. Finally,
in the memory structure file, we specify the total memory size
we desire to evaluate, the data width, whether the memory is a
scratch-pad memory (SPM) or a cache, and an optimization target
for our design (e.g., write/read delay-optimized, write/read energy-
optimized, or energy delay product (EDP)-optimized). The array-
level evaluation obtained by DESTINY and CACTI are then used to
estimate the impact of different CiM designs/technologies at the
application level. Details about this phase of our benchmarking
methodology are provided in Sec. 3.3.

1While we do not focus on evaluating CiM for 3Dmemories here, ourmethodologymay
be applied to these cases. Furthermore, the increasing memory density requirements
of data-intensive applications make a strong case for implementations of CiM based
on 3D memories.
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Figure 5: Variations of the load-load-op-store pattern. Unlike the reg-
ular pattern in (a), (b) replaces one source operand with an imme-
diate value while (c) continues using the output before it is stored
back to memory (From [17]).

3.3 System level
The system level evaluation of CiM corresponds to phase 3 in our
benchmarking methodology outlined in Fig. 1. In this phase, we
rely on a system evaluation tool, Eva-CiM [17]. We note that the
operations that CiM can support largely depend on the underly-
ing architecture and CiM circuitry. Furthermore, memory access
patterns as well as the compiler can have a large impact on how ef-
fectively a CiM structure can be exploited. For example, in [10], the
authors extend the original ISA with custom CiM instructions, di-
viding memory accesses for a given application into two categories:
(CiM-friendly and non-CiM-friendly). The CiM-friendly operations
(i.e., AND, OR, XOR, and ADD) are fed to the CiM for execution.
The system in [10] assumes that CiM instructions are executed
by a non-cacheable SPM module where data are accessed in situ.
In this model, one CiM-friendly operation can always replace two
memory reads. Thus, issues like memory hierarchy and locality of
data are not taken into consideration. In contrast, our Eva-CiM in
[17] automatically analyzes suitable offloaded instructions without

enforcing either critically-defined ISA constraints or data locality
assumption of the memory system.

Eva-CiM provides energy and performance estimates of the en-
tire system for a given application based on various architectural
setups. As part of its modeling strategy, Eva-CiM takes as input
the array-level energy and latency results generated with modified
DESTINY and CACTI tools (as described in Sec. 3.2). Eva-CiM em-
ploys GEM5 [33] as the backbone to simulate the behaviors of a
given application program and fully captures the effects of CiM on
both the host CPU and the complete memory hierarchy. It utilizes
a modified McPAT and a system-wise profiler that combines the
models at the application and CiM array levels to report the overall
system energy and performance profiles. Hence, Eva-CiM is not
limited to a particular technology/architecture nor a compiler, and
supports various design space explorations, including: (i) practically
analyzing if an application is CiM-friendly or not; (ii) comparing
various device technologies to choose the more advanced one; (iii)
determining the most appropriate CiM and memory architectures
and trade-offs between energy and performance.

The flow of the Eva-CiM tool is illustrated in Fig. 3, which encom-
passesModeling, Profiling,Analysis andApplication stages. A
complete description of every stage can be found in [17]. Here, we
focus on explaining the Eva-CiM’s analysis stage, which selects in-
structions to be offloaded to a CiMmodule for in-memory execution.
Eva-CiM analysis identifies these “CiM-capable" instructions by
capturing an application’s memory access and dependency-aware
ISA traces. For example, Fig. 4 illustrates a direct load-load-op-store
instruction pattern that could be offloaded to a CiM architecture
supporting in-memory addition. The load-load-op-store instruction
pattern can also appear in less-direct forms, as exemplified in Fig.
5. In order to fully identify CiM offloading candidates, Eva-CiM
embeds a trace-driven analyzer in GEM5 to perform the committed
instruction queue and dependency analysis and construct the in-
struction dependency graphs (IDGs). Compared with [10], Eva-CiM
accounts for interactions between CPU and memory system, and
the impacts of multi-level cache hierarchy, such as cache access
miss, 𝑒𝑡𝑐 ., in order to provide more generalized system-level CiM
benchmarking and overall benefit measurements.

4 EVALUATION
In this section, we employ the bottom-up benchmarking methodol-
ogy described in Sec. 3 to evaluate CiM designs based on different
technologies at the array and system levels.
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Table 1: Per operation FoM estimation results for different CiM designs. In the Area part, M denotes Memory die area, and C denotes Compu-
tation area overhead. (iso-capacity: 32Mbit-single Bank, Data Width: 512-bit)

Metrics SOT-MRAM[9] STT-MRAM[10] STT-MRAM[9] RRAM[22] SRAM[20] DRAM[21] FEFET-RAM[12]
Non-volatility Yes Yes Yes Yes No No Yes

Area (mm2) M: 7.06
C:∼0.3

M: 2.14
C:∼0.3

M: 6.22
C:∼0.3

M: 3.34
C: ∼2.5

M: 10.38
C: ∼0.5

M: 4.53
C: ∼0.04

M+C:
5.85

Read Latency (ns) 2.85 1.90 2.89 1.48 2.9 3.4 per access 1.89
Write Latency (ns) 2.59 5.29 11.55 20.9 2.7 1.58

Read Dynamic Energy (nJ) 0.57 0.37 0.65 0.38 0.34 0.66 per access 0.48
Write Dynamic Energy (nJ) 0.66 0.67 1.2 2.7 0.38 0.50

In-memory Logic
Energy (nJ)

Boolean ∼0.64 ∼0.46 ∼0.79 ∼1.13 ∼0.59 ∼0.75 ∼0.54
32-bit ADD ∼1.92 ∼1.59 ∼2.37 ∼3.4 1.18 ∼11.25 ∼0.61

In-memory Logic
Latency (ns)

Boolean ∼3.35 ∼1.92 ∼3.48 ∼1.9 3.1 ∼13.6 ∼2.03
32-bit ADD ∼3.82 ∼2.54 ∼3.98 ∼2.31 4.2 ∼51 ∼2.74

Leakage Power (mW) 550 - 722.4 587.6 5243 335.5 595.97
Endurance ∼ 1014 - 1015 [34] ∼ 1014 - 1015 [34] ∼ 1014 - 1015 [34] up to 1012[35] Unlimited 1015 1012 [36]

Data over-written issue No No No No No Yes No

4.1 Array-level evaluation
We explore the performance of 7 different CiM designs at the ar-
ray level with the ISO-memory-capacity constraint. We developed
a 32Mb, single-bank CiM module based on volatile SRAM [20]
and DRAM [21] and several representative non-volatile memories
including FeFET-RAM [12], STT-MRAM [9, 10], SOT-MRAM [9],
and ReRAM [22]. Note that we develop each CiM module from
scratch with an identical 45nm technology library. Table 1 lists
eleven performance metrics and per operation FoM results for each
CiM design. We list our observations below:

Area. We divide the area cost into two parts: memory die area
(M), and computation area (C) which includes the controller, modi-
fied decoder, sense amplifier, etc. In terms of memory die area, the
6T-SRAM and 2T-1R SOT-MRAM CiM modules impose a relatively
larger area than that of other designs. When considering computa-
tion area, the DRAM design [21] takes up 0.04 mm2, which is much
smaller than that of other CiMs. Overall, 1T-1R STT-MRAM [10],
DRAM [21], ReRAM [22] and FeFET-RAM [12] require the smallest
footprint for implementing a 32Mb CiM module, respectively.

Latency. The ReRAM crossbar [22], as reported in Table 1, shows
the shortest read latency (1.48 ns) as compared with other CiM de-
signs, but it has the longest write latency (20.9 ns). The FeFET-RAM
CiM achieves the shortest write latency and the second shortest
read latency compared to other technologies. Therefore, FeFET-
RAM could be considered as a potential CiM design if W/R latency
optimization is the main concern.

Dynamic energy & Leakage power. We report dynamic energy
for read, write, and in-memory operations in Table 1. As shown, in
terms of read energy, SRAM [20], STT-MRAM [10], and ReRAM
[22] CiMs respectively consume the smallest energy compared with
different technologies. However, when it comes to write energy,
SRAM, FeFET-RAM and SOT-MRAM outperforms others. To mea-
sure the computation energy at the array level, the CiMs’ capability
to perform (N)AND/(N)OR and full adder functions are taken into
consideration. Based on Table 1, the STT-MRAM [10] and FeFET-
RAM [20] respectively consume the smallest computation energy
compared to other technologies to perform in-memory operations.
It is worth pointing out that despite the DRAM CiM design based
on Ambit [21] consumes 0.75 nJ to perform (N)AND/(N)OR based

Triple-Row Activation mechanism, it requires over 14 memory cy-
cles to perform the addition operation to avoid overwriting data,
which leads to much higher energy consumption compared to other
CiM designs.

In terms of leakage power consumption, the DRAM (335.5 mW)
and SOT-MRAM (550 mW) could be considered as the most power-
efficient CiMs. However, we observe that the SRAM design con-
sumes ∼7-16× more power compared with other CiM modules.

4.2 System-level evaluation
Based on the array-level evaluation, we identify the FeFET-RAM as
one of the most promising designs among recent CiM implemen-
tations based on non-volatile emerging technologies. Therefore,
we use this design as a case study for the system-level evaluation
employing Eva-CiM [17]. Besides FeFET-RAM-CiM, we evaluate a
CMOS-based SRAM baseline for CiM implementation [20].

The system-level evaluation quantifies the benefit of the two CiM
designs for a set of 17 benchmark programs picked from various
application domains (the same set of programs used in [17]). In
[17], in order to decide where in the memory hierarchy CiM should
be placed, experiments with the SRAM-based CiM are conducted.
The results of these experiments indicate that, when CiM is placed
at the L1 cache or the L1+L2 caches simultaneously, CiM offers
the most benefits due to taking better advantage of data locality.
While the degree of benefit varies from application to application,
the observation holds for all the benchmark programs evaluated.

Therefore, to compare the CiM designs based on SRAM and Fe-
FET, we consider the CiM placed at the L1 cache. Fig. 6 presents the
performance and energy comparisons between SRAM and FeFET-
RAM, where both the energy and the performance improvements
are normalized to the non-CiM baseline system using CMOS SRAM.
We observe that FeFET-RAM outperforms CMOS SRAM by an av-
erage of 60% when considering energy savings, an improvement
that is consistent across all the benchmarks. Regarding speedup,
both technologies show similar benefits of about ∼1.5× (on average)
when compared to a conventional architecture (where processing
does not take place in memory).

5 CONCLUSION
In this paper, we present our methodology for uniform benchmark-
ing of CiM designs based on different memory technologies. We
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Figure 6: Benefits for CMOS-SRAM-CiM v.s. FeFET-RAM-CiM: Energy improvement (top); Performance improvement (bottom). (From [17]).

analyze various options of CiM designs from devices to the system
level. Our benchmarking methodology is employed to comprehen-
sively analyze the array-level performance of 7 recent CiM designs
implemented by volatile memories including SRAM [20] and DRAM
[21] and representative non-volatile memories such as FeFET-RAM
[12], STT-MRAM [9, 10] (with 2 different implementations), SOT-
MRAM [9], and RRAM [22]. We further describe a system-level
evaluation of the FeFET-RAM-based CiM (a design with superior
overall FoMs) in terms of performance and energy efficiency, us-
ing Eva-CiM[17]. The results of the system-level evaluation show
that the FeFET-RAM-based CiM outperforms a CMOS SRAM-CiM
baseline by an average of 60% across a set of 17 benchmarks when
considering energy savings. For speedup, both technologies offer
similar benefit of about ∼1.5× when compared to a conventional
CMOS processor where processing does not happen in memory.
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