\section{Performance Evaluation} \label{sec:eval} To evaluate the effectiveness of the proposed method, we did the different ratios of compressing on a thermal data by our method compared to JPEG image using different quality and png image, a lossless bit map image. We set the camera at the ceiling and view direction is perpendicular to the ground, and the thermal data size is $480 \times 640$ pixels. The JPEG image is generated by OpenCV $3.3.0$ which is using libjpeg version 9 13-Jan-2013, and image quality from $1$ to $99$. Figure~\ref{fig:4KMy} and Figure~\ref{fig:4KJpeg} show the different of JPEG and our method. JPEG image id generated by image quality level $3$, and thermal data of our method does $1390$ rounds of separate and compressed by Huffman Coding. In this case, Huffman Coding can reduce $39\%$ of compressed data size. \begin{figure}[ht] \begin{minipage}[b]{0.45\linewidth} \centering \includegraphics[width=\linewidth]{figures/my4000.png} \caption{Data compressed by Proposed Method (4KB)} \label{fig:4KMy} \end{minipage} \hspace{0.05\linewidth} \begin{minipage}[b]{0.45\linewidth} \centering \includegraphics[width=\linewidth]{figures/quality3.jpg} \caption{Data compressed by JPEG (4KB)} \label{fig:4KJpeg} \end{minipage} \end{figure} Figure~\ref{fig:compareToJpeg} shows that the size of file can reduce more than $50\%$ compared to JPEG image when both have $0.5\% (0.18^\circ C)$ of root-mean-square error. Our method has $82\%$ less error rate when the compressed data size is $4KB$. The percentage of file size is compared to PNG image. \begin{figure}[ht] \centering \includegraphics[width=\columnwidth]{figures/compareToJpeg.pdf} \caption{Proposed method and JPEG comparing} \label{fig:compareToJpeg} \end{figure} The computing time of a $480 \times 640$ thermal data on Raspberry Pi 3 is: \subsubsection{Date Structure Initialize} 0.233997 second. \subsubsection{Thermal Data Loading} 1.268126 second. \subsubsection{Regions dividing} About 4.6 microsecond per separation. Figure~\ref{fig:computeTime} shows the computation time of Region dividing. Total time is about 1.5 second. \begin{figure}[ht] \centering \includegraphics[width=\columnwidth]{figures/computeTime.pdf} \caption{Computation Time of Regions Dividing} \label{fig:computeTime} \end{figure}