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Abstract

In a IoT environment, many devices will periodically transmit data. However, most of the data are redundant,

but sensor itself may not have a good standard to decide to send or not. Some static rule maybe useful on specific

scenario, and become ineffective when we change the usage of the sensor. Hence, we design an algorithm to solve

the problem of data redundant for IoT devices. In the algorithm, we iteratively separate a data region into some

smaller regions. Each round, choose a region with highest variability, and separate it into four regions. Finally, each

region has different size and uses its average value to represent itself. If an area has more dynamical diverse data,

the density of regions will be higher. In this paper, we present a method to reduce the file size of thermal sensor

which can sense the temperature of a surface and outputs a two dimension gray scale image. In our evaluation

result, we can reduce the file size to 50% less than JPEG when 0.5% of distortion is allowed, and up to 93% less

when 2% of distortion is allowed.

I. INTRODUCTION

Walking exercises the nervous, cardiovascular, pulmonary, musculoskeletal and hematologic systems

because it requires more oxygen to contract the muscles. Hence, gait velocity, or called walking speed [1],

has become a valid and important metric for senior populations [1–3].

In 2011, Studenski et al [2] published a study that tracked gait velocity of over 34,000 seniors from

6 to 21 years in US. The study found that predicted survival rate based on age, sex, and gait velocity

was as accurate as predicted based on age, sex, chronic conditions, smoking history, blood pressure, body

mass index, and hospitalization. Consequently, it has motivated the industrial and academia communities

to develop the methodology to track and assess the risk based on gait velocity. The following years

have led to many papers that point to the importance of gait velocity as a predictor of degradation and

exacerbation events associated with various chronic diseases including heart failure, COPD, kidney failure,

stroke, etc [3–6].



In the US, there are 13 million seniors who live alone at home [7]. Gait velocity and stride length are

particularly important in this case since they provide an assessment of fall risk, the ability to perform

daily activities such as bathing and eating, and hence the potential for being independent. Assessment

of gait velocity is recommended to instruct the subjects to walk back and forth in a 5, 8 or 10 meter

walkway. Similar results were found in a study comparing a 3 meter walk test to the GAITRite electronic

walkway in individuals with chronic stroke [8].

The above approaches are conducted either at the clinical institutes or designated locations. They

are recommended by the physicians but are required to be conducted at limited time and location.

Consequently, it is difficult to observe the change in long term. It is desirable for the elderly, their

family members, and physicians to monitor gait velocity for the elderly all the time at any location.

However, the assessment should take into account several factors, including accuracy, privacy, portability,

robustness, and applicability.

Shih and his colleagues [9] proposed a sensing system to be installed at home or nursing institute

without revealing privacy and not using wearable devices. Given the proposed method, one may deploy

several thermal sensors in his/her apartments as shown in Figure 1. In this example, numbers of thermal

sensors are deployed to increase the coverage of the sensing signals. In large spaces such as living room,

there will be more than one sensor in one space; in small spaces such as corridor, there can be only one

sensor. One fundamental question to ask is how many sensors should be deployed and how these sensors

work together seamlessly to provide accurate gait velocity measurement.

In a IoT environment, many devices will periodically transmit data. Some sensors are used for avoid

accidents, so they will have very high sensing frequency. However, most of the data are redundant. Like

a temperature sensor on a gas stove, the temperature value is the same as the value from air conditioner

and does not change very frequently, but it will have dramatically difference when we are cooking. We

can simply make a threshold that when temperature is higher or lower than some degrees, the data will

be transmitted, and drop the data that we don’t interest. This is a very easy solution if we only have a

few devices, but when we have hundreds or thousands devices, it is impossible to manually configure all

devices, and the setting may need to change in the winter and summer, or different location.

In this paper, we study the data from Panasonic Grid-EYE, a 8 × 8 pixels infrared array sensor, and

FLIR ONE PRO, a 480× 640 pixels thermal camera. Both are setting on ceiling and taking a video of a

person walking under the camera.
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Fig. 1. Gait Velocity Measurement at Smart Homes

In Figure 1, there are fifteen thermal sensor in a house. If they are Panasonic Grid-EYE, it will have 2

bytes per pixel, 64 pixels per frame, 10 frames per second, and total need 1.7GB storage space per day.

If they are FLIR ONE PRO, it generates 5 frames per second but needs about 45KB per frame, and it

will need 291.6GB everyday.

Contribution The target of our work is to compress the thermal data retrieved from FLIR ONE PRO

to targeted data size and keep the quality of data. Nearby pixels in a thermal data mostly have similar

value, so we can easily separate an data region into several regions and use its average value to represent

it but will not cause too much error. By the method we proposed, the size of file can reduce more than

50% compare to using JPEG compression algorithm when both have 0.5%(0.18◦C) of root-mean-square

error.

The remaining of this paper is organized as follow. Section II presents related works and background

for developing the methods. Section III presents the system architecture, challenges, and the developed

mechanisms. Section IV presents the evaluation results of proposed mechanism and Section V summaries



our works.

II. BACKGROUND AND RELATED WORKS

A. Panasonic Grid-EYE Thermal Sensor

First, we study the sensor Panasonic Grid-EYE which is a thermal camera that can output 8× 8 pixels

thermal data with 2.5◦C accuracy and 0.25◦C resolution at 10 frames per second. In normal mode, the

current consumption is 4.5mA. It is a low resolution camera and infrared array sensor, so we install it in

our house at ease without some privacy issue that may cause by a surveillance camera.

When someone walks under a Grid-EYE sensor, we will see some pixels with higher temperature than

others. Figure 2 shows an example of thermal from Grid-EYE sensor. The sensor signal will form a signal

cone. The pixel sampling our head temperature will have the highest reading, body is lower, and leg is

the lowest except background because when the distance from camera to our body is longer, the area

covered by the camera will be wider and the ratio of background temperature in the pixel will increase,

also our head does not cover by cloth, so the surface temperature will higher than other place. While we

are walking in an area, the temperature of air in the area will become warmer, and the shape of human

will be more difficult to recognize.

Grid-EYE

Fig. 2. Walking under a Grid-EYE sensor



Figure 3 shows an example output of Grid-EYE sensor.
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Fig. 3. Output Data from Grid-EYE

B. FLIR ONE PRO

FLIR ONE PRO is a thermal camera that can output 480× 640 pixels thermal data with 3◦C accuracy

and 0.01◦C resolution, and capture speed is about 5 frames per second. In picture taking mode, it can

retrieve the precise data from the header of picture file. However, in the video taking mode, it only store a



gray scale video and show the range of temperature on the monitor. Hence, we use the data from picture

taking mode as our test object. The data form FLIR ONE PRO has about 5000 times resolution compared

to Grid-EYE. The shape of object is not just a cone. The temperature in a same object is similar, but

an Obvious edge between different objects. Hence, we developed a method to compress the thermal data

from FLIR PRO ONE. It can also treat as a normal image and be stored as jpeg, png, etc.

C. Raspberry Pi 3

We use Raspberry Pi 3 as our testing environment. It has a 1.2 GHz 64-bit quad-core ARM Cortex-A53

CPU, 1 GB memory, and 802.11n wireless network. We run a Debian-based Linux operating system on

it. While it is idle and turning off WiFi, it will consume 240mA and while uploading data at 24Mbit/s,

it will consume 400mA.

D. Simple Data Compressing

If we save a frame from Grid-EYE in a readable format, it will take about 380 bytes storage. However,

the temperature range of indoor environment mostly from 5◦C to 40◦C and the resolution of Grid-EYE

is 0.25◦C, so we can easily represent each temperature by one byte. Hence, we only need 64 bytes to

store a frame. We can use different ways to compress the frame.

1) Huffman Coding: Huffman coding is a lossless data compressing. In average, it can reduce the

frame size from 64 bytes to 40.7 bytes with 6 bytes standard deviation.

2) Z-score Threshold: We can only send the pixels with higher temperature since thermal sensors are

mostly used for detect heat source. Z-score is defined as z = χ−µ
σ

where χ is the value of the temperature, µ

is the average of the temperature and σ is the standard deviation of the temperature. In our earlier work [9],

we use Z-score instead of a static threshold to detect human because the background temperature may have

a 10◦C difference between day and night, and when people walk through the sensing area the Grid-EYE,

the temperature reading will only increase 2◦C to 3◦C. Hence, it is impossible to use a static threshold

to detect human. In [9], the pixels with useful data only if the Z-score is higher than 2, so we can reduce

the frame size by dropping all pixels with Z-score lower than 2. We can reduce the file size from 64 bytes

to 12.6 bytes with 2.9 bytes standard deviation by Z-score threshold 2 and compress by Huffman coding.

3) Gaussian Function Fitting: Since the temperature readings of human body in a thermal data from

Grid-EYE looks like a signal cone, we may use a Gaussian function to fit the thermal data. A Gaussian

function y = Ae−(x−B)2/2C2 has three parameter A, B and C. The parameter A is the height of the



cone, B is the position of the cone’s peak and C controls the width of the cone. We use the pixel with

highest temperature to be the peak of the cone, so we only need to adjust A and C to fit the thermal

data. Guo [10] provides a fast way to determine the fitting Gaussian function. In our testing, it will have

0.5◦C root-mean-square error in average, and only needs 5 bytes to store the position of peak and two

parameters.

III. DATA SIZE DECISION FRAMEWORK

This section presents the proposed method to generate a data array that has less size compared to jpeg

image when some of distortion is allowed. We use the thermal data from FLIR ONE PRO.

The nearby pixels usually have similar values, except at the edge of objects. Hence, we can divide an

image into several regions, and the pixels in a same region has similar value so we can use the average

value to represent it and do not cause too much error. However, precisely divide an image into some

polygon region needs a lot of computation power and difficult to describe the edge of each region. Also,

determining the number of region is a challenge. Hence, to effectively describe regions we design that

every region most be a rectangle, and every region can divide into 4 regions by cut in half at the middle

of horizontal and vertical. The image will start from only contains one region, and 3 regions will be added

per round since we divide a region into 4 pieces.

Our method is shown in Figure 4. Data structure initialization only needs to do once if the size of

a frame doesn’t change. A thermal data will be loaded into our data structure and divide into several

regions. Finally, the compressed data will be encoded by Huffman coding, and transmitted to database.

When users want to use the thermal data, they can restore the data from the encoded data in database.

A. Region Represent Grammar

For each frame, we can use a context-free language to represent it.

S → R

R→ α

R→ βRRRR

R refers to a region of frame, and it can either use the average α of the pixels in the region to represent

the whole region or divide into four regions and left a remainder β. Dependence on size of compressed

data, we can choose the amount of dividing regions. The context-free grammar starts from a region

containing whole frame. For each R we calculate a score based on the data the quality of data we can



Thermal 
Image

Data Structure 
Initialize

Load Image
Separate 
Regions

Encode by 
Huffman coding

Decode and 
Restore Image

Output

Database

Raspberry Pi 3

Fig. 4. System Architecture

improve by dividing it into smaller regions. Figure 5 shows an example of thermal data which was took

by FLIR ONE PRO. One of the possible outcome is Shown in Figure 6 if we divide the frame 6 times

and it will have 19 regions. By this method, we can iteratively compress the thermal data until the number

of regions reach our file size requirement or the error rate is less than the requirement.

B. Data Structure and Region Selection Algorithm

To help us choose which region to be divided, we give every region a score, and put them into a heap.

For each round, we pick the region with the highest score, and divide it into four subregions, calculate the

score of subregions, and put them into the heap. We use the sum of square error of pixels in the region

R as the score of the region.

µ = E(R)

Score =
∑
X∈R

(X − µ)2

=
∑
X∈R

X2 − |R|µ2

By the equation shown above, we just need to know the sum of square and the sum of all pixels in

the region to calculate the score of the region. We use a 4-dimension segment tree as a container to store

all possible regions and its scores. Since segment tree is a complete tree, the size of tree is less than 2



Fig. 5. PNG image, size = 46KB Fig. 6. Region divided by our method

times the number if pixels. For each node of segment tree, it records the range on both width and height

it covered, sum
∑
X∈R

X , and sum of square
∑
X∈R

X2 of pixels in the region. The root of segment tree starts

is node number 0, and each node i has four child from node number from i× 4 + 1 to i× 4 + 4. Hence,

we only need to allocate a large array and recursively process all nodes form root. Algorithm 1 shows

how we generate the tree and calculate the sum of square and the sum of all nodes.

For region selection, we use a priority queue to retrieve the region of considerate regions with highest

score. The priority queue is made by heap, and start with only root of the segment tree. For each round

the priority queue pop the item with highest score and push all its child in to the queue.

The compressed data size is depended on how many iterations of dividing the regions. The compressed

data size will be about the number of iterations times four bytes. Algorithm 2 shows how we divide

regions until specified data size.

The error rate of the compressed data is the sum of the squared error of regions in priority queue.

Algorithm 3 shows how we divide regions until specified RMSE.

After the region dividing finished, we will generate the data string to be sent. The regions in seperatedRegions

will be replaced by a reminder for dividing and others in PriorityQueue will be the average sensor reading



Algorithm 1 Segment Tree Preprocess
1: Tree = Array()
2: function SETTREENODE(x, left, right, top, bottom)
3: if left = right top = bottom then
4: Tree[x].Sum = Frame[left][top]
5: Tree[x].SquareSum = Frame[left][top]2

6: else
7: setTreeNode(4x+ 1, left, (left+ right)/2, top, (top+ bottom)/2)
8: setTreeNode(4x+ 2, (left+ right)/2, right, top, (top+ bottom)/2)
9: setTreeNode(4x+ 3, left, (left+ right)/2, (top+ bottom)/2, bottom)

10: setTreeNode(4x+ 4, (left+ right)/2, right, (top+ bottom)/2, bottom)

11: Tree[x].Sum =
4x+4∑
i=4x+1

Tree[i].sum

12: Tree[x].SquareSum =
4x+4∑
i=4x+1

Tree[i].SquareSum

13: Tree[x].SquaredError = Tree[x].SquareSum− Tree[x].Sum2

(right−left+1)×(bottom−top+1)

14: setTreeNode(0, 0, F rame.Width, 0, F rame.Height)

Algorithm 2 Dividing regions depends on compressed data size
1: seperatedRegions = Array()
2: PriorityQueue = Heap()
3: PriorityQueue.Push(Tree[0].SquaredError, 0)
4: for i = 0..NumberOfIterations do
5: value, x = PriorityQueue.Pop()
6: seperatedRegions.push(x)
7: for j = 1..4 do
8: PriorityQueue.Push(Tree[4x+ j].SquaredError, 4x+ j)

in the region, and then compress the string by Huffman Coding.

The complexity of our algorithm can be divided into 3 parts. First part is to initialize the segment tree.

The size of segment is depends on the size of the frame. If the number of pixels is N , the height of

segment tree is O(Nlog(N)), and the number of nodes will be O(N). The time complexity of initialize is

O(N). Second part is loading the thermal data. It will need to traverse whole tree from leaf to root. Since

segment tree can be stored in an array, it also takes O(N) time to load the thermal data. Third part is to

divide regions. For each round, we pop an element from heap and push four elements into heap. If there

is K iterations, the size of heap will be 3K + 1. Time complexity of pop and push will be O(log(K)),

and do it 5K times will be O(Klog(K)).



Algorithm 3 Dividing regions depends on compressed data RMSE
1: seperatedRegions = Array()
2: PriorityQueue = Heap()
3: PriorityQueue.Push(Tree[0].SquaredError, 0)
4: SquaredError = Tree[0].SquaredError

5: while
√
(SquaredError/FrameSize) > SpecifiedRMSE do

6: value, x = PriorityQueue.Pop()
7: seperatedRegions.push(x)
8: SquaredError -= value
9: for j = 1..4 do

10: PriorityQueue.Push(Tree[4x+ j].SquaredError, 4x+ j)
11: SquaredError += Tree[4x+ j].SquaredError

IV. PERFORMANCE EVALUATION

To evaluate the effectiveness of the proposed method, we did the different ratios of compressing on a

thermal data by our method compared to JPEG image using different quality and png image, a lossless

bit map image. We set the camera at the ceiling and view direction is perpendicular to the ground, and

the thermal data size is 480× 640 pixels. The JPEG image is generated by OpenCV 3.3.0 which is using

libjpeg version 9 13-Jan-2013, and image quality from 1 to 99.

Figure 7 and Figure 8 show the different of JPEG and our method. JPEG image id generated by image

quality level 3, and thermal data of our method does 1390 rounds of separate and compressed by Huffman

Coding. In this case, Huffman Coding can reduce 39% of compressed data size.

Figure 9 shows that the size of file can reduce more than 50% compared to JPEG image when both

have 0.5%(0.18◦C) of root-mean-square error. Our method has 82% less error rate when the compressed

data size is 4KB. The percentage of file size is compared to PNG image.

The computing time of a 480× 640 thermal data on Raspberry Pi 3 is:

1) Date Structure Initialize: 0.233997 second.

2) Thermal Data Loading: 1.268126 second.

3) Regions dividing: About 4.6 microsecond per separation. Figure 10 shows the computation time of

Region dividing.

Total time is about 1.5 second.

V. CONCLUSION

In this paper we present the design to reduce the data size of a two dimension thermal data. Nearby pixels

in a thermal data mostly have similar value, so we can easily separate an data region into several regions



Fig. 7. Data compressed by Proposed Method (4KB) Fig. 8. Data compressed by JPEG (4KB)

and use its average value to represent it but will not cause too much error. The method we proposed can

either choose the data size or error rate of compressed data. By giving every regions different resolutions,

we can reduce the file size to 50% less than JPEG when there is 0.5% of distortion, and up to 93% less

when there is 2% of distortion.
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