
1943-0582/19©2019IEEE IEEE SOLID-STATE CIRCUITS MAGAZINE SUMMER 20 19 43

 igh-dimensional-
ity matrix-vector
mult ip l ic at ion
(MVM) is a dominant

kernel in signal-pro -
cessing and machine-learning com-
putations that are being deployed in
a range of energy- and throughput-
constrained applications. In-memory
computing (IMC) exploits the structural
alignment between a dense 2D array
of bit cells and the dataflow in MVM,
enabling opportunities to address com-
putational energy and throughput.
Recent prototypes have demonstrated
the potential for 10× benefits in both
metrics. However, fitting computation
within an array of constrained bit-cell
circuits imposes a number of chal-
lenges, including the need for ana-
log computation, efficient interfacing
with conventional digital accelerators
(enabling the required programmabil-

ity), and efficient virtualization of the
hardware to map software. This article
provides an overview of the fundamen-
tals of IMC to better explain these chal-
lenges and then identifies promising
paths forward among the wide range
of emerging research.

Communication Cost
The computational requirements in
emerging applications of machine
learning and signal processing are
pushing platforms to their energy-
efficiency and throughput limits.
Hardware specialization has proven
to be critical, with digital accel-
erators achieving 10–100× higher
energy efficiency and speed than
general-purpose processors. How-
ever, these gains apply primarily to
computation, not memory accessing
and, more generally, data movement
[1]. Increasingly, the applications of
interest are datacentric, involving
large data sets or high-dimensional-
ity data structures. This shifts the

emphasis toward data movement,
which unfortunately imposes limits
on the gains possible from conven-
tional digital acceleration.

A manifestation of this is the widely
recognized “memory wall.” Although
often associated with accessing data
from off-chip memory, the problem
is more fundamental, arising in any
architecture that separates memory
and computation. Storing data in
physical bit cells requires area, which
thus scales with the amount of data to
be stored. This raises a corresponding
communication cost for moving data
from the point of storage to the point
of computation, outside the memory.
To illustrate this cost, Figure 1 com-
pares the energy required to access
one word of data (64 b) from differ-
ent-sized memories in a 45-nm tech-
nology to the energy of multiplication
operations (considering the lowered
precision levels that are increasingly
relevant for deep-learning inference
computations [2]–[4]).

Advances and prospects

Naveen Verma, Hongyang Jia, Hossein Valavi, Yinqi Tang, Murat Ozatay,
Lung-Yen Chen, Bonan Zhang, and Peter Deaville

 In-Memory Computing

H

Digital Object Identifier 10.1109/MSSC.2019.2922889

Date of publication: 27 August 2019

Authorized licensed use limited to: National Taiwan University. Downloaded on October 29,2020 at 10:12:46 UTC from IEEE Xplore. Restrictions apply.

cshih
Highlight

cshih
Highlight

44 SUMMER 20 19 IEEE SOLID-STATE CIRCUITS MAGAZINE

Given that the communication cost
is fundamental, computing architec-
tures cannot avoid it, but they can
attempt to amortize it. For example,
general-purpose architectures employ
caching in a memory system. This in -
volves successively larger memories
with correspondingly larger communi-
cation costs. However, those costs are
incurred only when bringing data into
the smaller memories, and then the
statistical property of locality ensures
that data are much more likely to be
used for subsequent computations than
data left in the larger memories. Spe-
cialized architectures being designed

for specific computations can perform
even more aggressive and determinis-
tic amortization. For example, Figure 2
considers the case of MVM ,c bA #=v v
which has motivated spatial architec-
tures. Here, processing engines (PEs)
are arranged in a 2D array, matching
the dataflow of MVM [5], [6]. PEs can
have small, efficient local memories,
storing only their intended operands.
Furthermore, they move a computa-
tional result to adjacent PEs, which
effectively amortizes the movement
of all previously accessed operands.

MVMs represent a particularly im -
portant compute kernel due to their

prominence in signal-processing and
machine-learning computations. For-
tunately, as seen in the case of spatial
architectures, MVMs also present signif-
icant opportunities for amortization.

Next, we describe the basic approach
of IMC, which exploits more aggres-
sive amortization within the memory
array itself.

IMC Fundamentals
Figure 3 illustrates the approach of
IMC, using the architecture from [7] as
an example. The IMC architecture is
based on an array of six-transistor static
random-access memory (6T-SRAM) bit
cells, and it includes periphery for two
modes of operation. In SRAM mode,
rows are accessed one at a time to
read/write data via digital activation
of a word line (WL). On the other hand,
in IMC mode, multiple or all rows are
accessed at once, using input data to
activate the WLs. In the example, each
WL digital-to-analog converter (WLDAC)
applies an analog voltage correspond-
ing to an input-vector element, which
thus modulates the bit-cell current.
Taking the bitlines (BL/BLb) as a differ-
ential signal, the stored data then have
the effect of multiplying the input-vec-
tor element by +1/–1, and the currents
from all bit cells in a column accumu-
late, generating an analog discharge of
BL/BLb. This yields a multiply–accu-
mulate (MAC) operation as required
for MVM. Thus, instead of accessing
raw bits row by row, IMC accesses a
computation result over many/all bits,
thereby amortizing the accessing costs.
Note that such amortization is possible
because of the structure of memory,
where MVM involves mapping parallel
input data to WLs and parallel com-
putation to bit cells with stored data,
followed by reducing output data via
accumulation. Thus, IMC can apply to
any memory technology integrated in
such a structure [8]–[10].

Bandwidth/Latency/Energy Versus
Signal-to-Noise Ratio Tradeoff
The amortization performed by IMC
changes the basic tradeoffs associated
with memory accessing. Figure 4 ana-
lyzes the typical metrics of interest

1,000

100

10

1E
ne

rg
y

pe
r

A
cc

es
s

64
-b

 W
or

d
(p

J)

8 kB 32 kB 100 MB DRAM
Memory Size (D)

10 pJ
20 pJ

100 pJ

2 nJ

MULT (FP32): 5 pJ
MULT (INT32): 3 pJ

MULT (INT8): 0.3 pJ

MULT (INT4): 0.1 pJ

FIGURE 1: The energy cost of accessing memory.

0 0 a14 a13 a12 a11

0 a24 a23 a22 a21 0

a34 a33 a32 a31 0 0

b11
b21
b31
b41

b12
b22
b32
b42

b13
b23
b33
b43

b14
b24
b34
b44

b15
b25
b35
b45

c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

c31 c32 c33 c34 c35

A

B

C

+∗

PE

FIGURE 2: The spatial architecture for data-movement/memory-accessing amortization.

The computational requirements in emerging
applications of machine learning and signal
processing are pushing platforms to their
energy-efficiency and throughput limits.

Authorized licensed use limited to: National Taiwan University. Downloaded on October 29,2020 at 10:12:46 UTC from IEEE Xplore. Restrictions apply.

 IEEE SOLID-STATE CIRCUITS MAGAZINE SUMMER 20 19 45

for memory (bandwidth, latency, and
energy) and introduces a new metric
relevant for computation, signal-to-
noise ratio (SNR), by comparing a
conventional architecture with IMC.
Consider accessing D bits of data from
a D D# memory [7]:

 ■ Bandwidth: In the conventional
architecture, bandwidth scales as
D /1 2 with the number of row-wise
access cycles required. In IMC,
bandwidth does not scale because
all rows are accessed at once.

 ■ Latency: In the conventional ar-
chitecture, latency scales as D due
to the D /1 2 access cycles required
and D /1 2 scaling of access-cycle
delay with the BL/BLb capacitance.
In IMC, latency does not scale, be-
cause activating all WLs causes the
total bit-cell discharge current to
scale at the same rate as BL/BLb
capacitance.

 ■ Energy: In the conventional archi-
tecture, energy scales as D /23 with
the number of access cycles, BL/
BLb capacitance, and number of
columns. In IMC, energy scales
only as D, because all data are ac-
cessed in one cycle.

 ■ SNR: In the conventional architec-
ture, SNR does not scale because
the implicit assumption is that
BL/BLb discharge remains fixed to
maintain the required data-sens-
ing margin. In IMC, SNR scales
as /D1 /1 2 because accumulation
over D /1 2 bit cells results in a cor-
responding increase of dynamic
range. Fitting this in a fixed BL/
BLb swing causes a corresponding
reduction of SNR.
From this first-order analysis, we

see that IMC enables significant band-
width/latency/energy gains at the
cost of SNR. Some important second-
ary factors should be kept in mind.
First, the analysis focuses on BL/BLb
communication costs, which typically
do minate in memory. However, IMC
leaves WL activation costs unchanged
(conventional and IMC architectures
involve the same number of WL acti-
vations), somewhat reducing the total
gains from IMC. Second, this analy-
sis does not consider BL/BLb swing

optimization. Conventional memory
often exploits reduced swing, whereas
IMC may prefer full swing due to BL/
BLb dynamic-range requirements.
Nonetheless, typical values of D /1 2
(e.g., 128 in [7]) open up the potential
for significant gains through IMC, as
we will see later in the article. How-
ever, the SNR tradeoff is a primary
concern, challenging the scale, reliable
specification, and configurability/

programmability of computation, all
of which are required for integration
in modern computing platforms. Thus,
emerging approaches to IMC must ad -
dress the underlying issue of SNR de -
monstrated against these challenges.

Comparison With
Digital Architectures
Although the previous analysis com-
pared memory accessing in IMC with

WLDrvr0

WLDAC0

WLDAC127

WLDrvr127

6T6T

6T 6T

A

c
→

b
→

IMC
Mode

SRAM
Mode

6T-SRAM
Array

(128×128)

FIGURE 3: The basic approach of IMC illustrated in [7].

Conventional IMC

Memory
(D1/2 × D1/2 Array)

Memory and
Computation

(D1/2 × D1/2 Array)

D1/2

Computation

Metric Traditional In-Memory

Bandwidth

Latency

Energy

SNR

1/D1/2

D

D3/2

1

1

1

~D

~1/D1/2

FIGURE 4: The basic tradeoffs with IMC.

Increasingly, the applications of interest are
datacentric, involving large data sets or high-
dimensionality data structures.

Authorized licensed use limited to: National Taiwan University. Downloaded on October 29,2020 at 10:12:46 UTC from IEEE Xplore. Restrictions apply.

cshih
Highlight

46 SUMMER 20 19 IEEE SOLID-STATE CIRCUITS MAGAZINE

that in a canonical digital-acceler-
ator architecture, MVMs have mo -
tivated more specialized spatial
architectures. In fact, IMC can itself
be regarded as a spatial architec-
ture, but one where PEs are highly
dense bit cells. Thus, the data-move-
ment and computation costs can
be compared.

Figure 5(a) considers data move-
ment. One set of operands must
move horizontally across the array
(e.g., input-vector elements), one set
can be stationary in the PEs (e.g.,
matrix elements), and one set must
move vertically across the array (e.g.,

output-vector elements). In IMC, the
horizontal movement is mitigated by
the high density of bit cells, which
are found to be 10–100× smaller in
area (3–10× smaller in edge length)
for corresponding MAC-computation
hardware (e.g., [5] versus [7] and [11]).
Furthermore, the vertical movement is
mitigated both by the high density
of bit cells and because the high-
dynamic-range signal drives the capac-
itance of a single wire in analog IMC
architectures and multiple wires in a
digital architecture.

Figure 5(b) considers computa-
tion, using the design point of 4-b

MACs and 1,024 dimensional vectors/
ma trices as an example (relevant to cur-
rent trends in deep-learning inference
systems). While this IMC architecture
is restricted to 1-b stored operands, a
recently proposed approach (descri -
bed later in the article) extends to
multiple bits by performing 1-b MACs
serially and in parallel columns, fol-
lowed by digitization, proper binary
weighting (barrel shifting), and
fi nally summation of the outputs
[12]. This approach exploits an addi-
tional form of amortization along
the memory-column dimension, in
terms of the operations required

0

a24

a33

a14

a23

a32

a13

a22

a31

a12

a21

0

a11

0

0

0

0

a34

b11
b21
b31
b41

b12
b22
b32
b42

b13
b23
b33
b43

b14
b24
b34
b44

b15
b25
b35
b45

B

WLDrvr0

WLDAC0

WLDAC127

WLDrvr127

6T

6T

6T

6T

6T-SRAM
Array

(128×128)

C = AB

Assume:
• 1-k Dimensionality
• 4-b Multiplies
• 45-nm CMOS

A
C

B

+∗

PRE PRE PRE PREb11
[3]

b21
[3]

a11
[3]

a11
[2]

a11
[1]

a12
[3]

a12
[2]

a12
[1]

a11
[0]

a12
[0]

c11(23) c11(22) c11(21) c11(20)

Operation Digital PE Energy (fJ) Bit-Cell Energy (fJ)

Storage

Multiplication

Accumulation

Communication

Total

250

100

200

40

590

50

5

55

(b)

(a)

FIGURE 5: A comparison of IMC with spatial architectures: the (a) data movement and (b) computation.

Authorized licensed use limited to: National Taiwan University. Downloaded on October 29,2020 at 10:12:46 UTC from IEEE Xplore. Restrictions apply.

 IEEE SOLID-STATE CIRCUITS MAGAZINE SUMMER 20 19 47

for multibit computation. Namely,
although IMC bit cells can perform
1-b logical operations (XNOR and
AND), digital PEs require multibit
operation (full adder). As we will
show, such amortization once again
imposes an SNR tradeoff. Using sili-
con measurements and postlayout
simulations in a 45-nm technology,
we see that, over the storage, multi-
ply, accumulate, and data-movement
operations performed by PEs, IMC
holds the potential for 10× greater
energy efficiency.

Current Standing of IMC
With IMC recently becoming an active
research area, we have seen a num-
ber of prototype demonstrations
that enable comparisons against
digital-accelerator approaches. Fig-
ure 6(a) plots the area-normalized
throughput versus energy efficiency
of recent IMC and non-IMC proto-
types, showing that IMC enables
roughly 10× gains in each metric,
which is expected based on the
aforementioned analysis. Although
this represents significant prom-
ise, Figure 6(b) exposes the primary
challenge: plotting the total scale of
computation achieved (the amount
in memory integrated in prototypes).
With the exception of one design [11]
(considered in detail in the “High-
SNR Circuit Design” section), IMC
demonstrations have been highly
limited in scale, primarily due to the
fundamental SNR tradeoff described,
especially in the context of analog
computation. The following section
takes a closer look at the challenges,
using recent demonstrations as ex -
amples, to then motivate possible
paths forward.

IMC Challenges and Approaches
Multiple IMC approaches have re cently
been proposed. To frame this discus-
sion, it is useful to relate these to the
fundamental tradeoffs developed in
the “Bandwidth/Latency/Energy
Versus Signal-to-Noise Ratio Trad-
eoff” section. For example, although
some designs perform computation in
memory, they may activate only one or

two WLs at a time (e.g., [13] and [14]).
This prevents significant amortiza-
tion compared to standard memory
accessing, yet it incurs the challeng -
 es of integrating computation in con-
strained bit-cell circuits (e.g., [13]
requires adopting a 10-T bit cell, and
[14] requires multiple memory-oper-
ation cycles). In such cases, standard
memory accessing would likely be
preferable, followed by computation
just outside the memory array using
less constrained circuits. Keeping in
mind the fundamental IMC trad-
eoffs, the following sections survey
the challenges, illustrated using recent
design examples.

Circuit Challenges

Analog Nonidealities
To fit computation in constrained bit-
cell circuits, IMC commonly employs
analog operation, leveraging richer T
behavior than that allowed by digital
switch-based abstraction. With regard
to the SNR tradeoff, the increased
sensitivity to variations and nonlin-
earities now becomes the dominant
source of computation noise. For
instance, Figure 7 shows the nonlin-
earity and variation (standard devia-
tion shown as error bars) of the BL/
BLb output with respect to one input-
vector element value in [7] and to the

10e4

10e3

10e2

10e2

10e3

10

10

1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t (

G
O

P
/s

/m
m

2)
O

n-
C

hi
p

M
em

or
y

S
iz

e
(k

B
)

Khwa, ISSCC’18, 65 nm

Khwa, ISSCC’18, 65 nm

Zhang, VLSI’16, 130 nm

Zhang,
VLSI’16,
130 nm

Jiang,
VLSI’18,
65 nm

Jiang,
VLSI’18,
65 nm

Biswas,
ISSCC’18, 65 nm

Biswas,
ISSCC’18, 65 nm

Gonug,
ISSCC’18, 65 nm

Gonug,
ISSCC’18, 65 nm

Bankman,
ISSCC’18, 28 nm

Bankman,
ISSCC’18,

28 nm

Yuan, VLSI’18, 65 nm

Yuan, VLSI’18, 65 nm

Chen, ISSCC’16, 65 nm

Chen,
ISSCC’16,

65 nm

Yin, VLSI’17, 65 nm

Yin, VLSI’17, 65 nm

Shin, ISSCC’17, 65 nm
Ando, VLSI’17, 65 nm

Ando, VLSI’17, 65 nm

Moons, ISSCC’17, 28 nm

Moons,
ISSCC’17,
28 nm

Lee, ISSCC’18, 65 nm

Lee,
ISSCC’18,

65 nm

Valavi, VLSI’18, 65 nm

Valavi,
VLSI’18,
65 nm

10e–2 10e–1 1 10 10e2 10e3
Energy Efficiency (TOP/s/W)

(a)

10e–2 10e–1 1 10 10e2 10e3
Energy Efficiency (TOP/s/W)

(b)

IMC

Not IMC

FIGURE 6: A comparison of IMC and non-IMC prototypes: the (a) throughput versus energy
efficiency and (b) total memory versus area efficiency.

Authorized licensed use limited to: National Taiwan University. Downloaded on October 29,2020 at 10:12:46 UTC from IEEE Xplore. Restrictions apply.

48 SUMMER 20 19 IEEE SOLID-STATE CIRCUITS MAGAZINE

overall accumulation result in [15].
Additionally, using T currents as the
output signal of each bit cell also
raises sensitivities to temperature,
which can strongly impact carrier
transport in semiconductors.

One way to mitigate the effects
of T nonlinearity arising from BL/
BLb biasing is to employ low-swing
signaling. However, the SNR trad-
eoff is then adversely affected by the

increased impact of variations (and
shot-noise sources) relative to the
signal. In fact, higher computation
SNR may be observed in practice by
increasing swing [16]. Nonetheless,
Figure 8 illustrates the approach
in [16], also showing that the MAC
operation possible in IMC columns
can be used beyond MVMs. In this
case, multibit data are stored in a col-
umn-major format, and different WL

pulsewidths are applied in parallel
for binary weighting, thereby yield-
ing an analog read operation of a mul-
tibit word (configurable mixed-signal
computation is then performed in the
array periphery).

An important direction for IMC
is incorporating alternate memory
technologies—for instance, nonvola-
tile technologies—that can enable
the possibility of multilevel stor-
age, low-power duty-cycle operation,
and increased density. The emerg-
ing memory technologies can include
resistive RAM (RRAM), magnetic RAM
(MRAM), and phase-change memory
(PCM). Such technologies suffer from
many of the same analog nonideali-
ties as SRAM-based IMC. For instance,
Figure 9(a) shows the variation of
MAC outputs from a NOR-flash imple-
mentation [8]. On top of this, such
technologies are likely to exacerbate
the challenges with analog readout.
For instance, multilevel storage fur-
ther increases dynamic-range require-
ments, impacting the SNR tradeoff,
and the relatively low resistance and
low-resistance contrast of emerg-
ing memory technologies (RRAM and
MRAM) increase the power and area of
the readout circuitry, which already
dominates in demonstrated systems
[9], as shown in Figure 9(b).

Power Delivery
IMC leverages the parallel struc-
ture of memory. However, such par-
allel operation also elevates peak

0.06

0.04

0.02

0

∆V
B

L
(V

)

V
B

L
(V

)

5 10 15 20 25 30 35
WLDAC Code XAC Value

(a) (b)

Nominal Transfer Curve

Ideal Transfer Curve 0.6

0.5

0.4

0.3

0.2

0.1

0.0
–128 0 128 256

0.32 V

0.28 V

Measurement

0.06

0.04

0.02

0

∆V
B

L
(V

)

V
R

B
L

(V
)

5 10 15 20 25 30 35
WLDAC Code XAC Value

(a) (b)

Nominal Transfer Curve

Ideal Transfer Curve 0.6

0.5

0.4

0.3

0.2

0.1

0.0
–128–256 0 128 256

0.32 V

0.28 V

Measurement

FIGURE 7: An illustration of analog-computation nonidealities: (a) the BL/BLb-discharge noni-
deality in [7] and (b) the read-BL nonideality in [15]. XAC: XNOR-and-accumulate value.

VBL

CBL CBL

CWL

CWL
VWL0

VWL0

VWL1

VWL2

VWL3

VBL

VBLB

VPRE

VWL1

Prech

d0

d1

6T-SRAM Bit Cell

d3 d2 d1 d0

8∆VIsb
4∆VIsb 2∆VIsb ∆VIsb

∆VBL (D)

T3 = 8T0 T2 = 4T0 T1 = 2T0 T0

FIGURE 8: An analog readout of multibit data stored in bit-major format [16].

0.9

0.6

0.3

M
ea

su
re

d
Va

lu
e

(V
)

0

0 0.3 0.6
Simulated Value (V)

0.9

<error> = 1/160,000x
∑(Vmeas – Vsim)/Vsim = 0.07

Chip 4

In
pu

t
R

eg
is

te
r

In
pu

t
R

eg
is

te
r

a0

a1

DAC

DAC

SL[0] WL[0]

WL[1]

BL[0] BL[1]

SL[1]
w00 w01

w10 w11
ADC ADCb0 b1

RG RGOutput
Register

Output
Register

= VDD

= VDD

Challenge 1

Challenge 2

28% 86% 11%48%

24%

Energy Area

ADC

DAC

RRAM
3-b ADC and DAC are adopted in this evaluation.
ADC and DAC overheads.

SL[1] = 0 WL[1] = VDD

w11 VBL[1]

VBL[1] – 0

R
i =

Leakage Current

(a) (b)

FIGURE 9: The challenges with nonvolatile memory technologies: the (a) variation of MAC outputs [8] and (b) energy/area consumption of
readout circuity [9]. ADC: analog-to-digital converter.

Authorized licensed use limited to: National Taiwan University. Downloaded on October 29,2020 at 10:12:46 UTC from IEEE Xplore. Restrictions apply.

 IEEE SOLID-STATE CIRCUITS MAGAZINE SUMMER 20 19 49

power-delivery requirements in
at least two ways. First, activation of
many/all WLs is fundamental to the
amortization performed and thus
requires corresponding power deliv-
ery to the WL drivers. This must be
addressed through power-grid density,
especially because noise on the WL
levels can translate directly to com-
putation noise. Second, operation of
many/all bit cells is fundamental to the
amortization performed. We can make
a distinction between static and
dynamic computation approaches.
Figure 10(a) shows an example of static
computation, employing a static buf-
fer at the bit-cell output [15]. In this
case, activating many/all bit cells leads
to currents of up to 1 mA in each col-
umn, challenging the feasibility of
low-noise power delivery. Figure 10(b)
shows an example of dynamic com-
putation, where the activated bit cells
simply discharge the BL/BLb capaci-
tance such that the total charge deliv-
ered never exceeds that of a standard
full-swing read [7]. This requires de -
signing against saturation of BL/BLb
discharge, as is done in [7] by restrict-
ing WLDAC output range and minimiz-
ing BL/BLb leakage, which can result
in computation noise.

Bit-Cell Stability
A consequence of accessing compu-
tational results rather than raw data
is that activated bit cells are exposed
to different data on BL/BLb than
those stored. This raises the possi-
bility of disrupting their stored data.
Two approaches have been pursued
to guard against this. First, buffered
cells have been employed, whereby
the critical data-storage nodes are
isolated from the computed BL/BLb
value [15]. This has the drawback of
degrading density. Second, suitable
bit-cell biasing has been employed.
This has included low-swing sig-
naling on BL/BLb such that bit-cell
biasing remains close to standard
SRAM read-condition biasing [16].
However, this adversely affects the
SNR tradeoff. Alternatively, WL-bias-
ing has been employed, wherein the
WL voltage is kept low [7]. In addi-

tion to limiting the bit-cell current
to guard against BL/BLb saturation
in dynamic computation, this can
ensure adequate isolation of the
bit-cell storage nodes from the com-
puted BL/BLb value.

Architectural Challenges
IMC primarily addresses MVM or
other vector operations, which repre-
sent only a subset of computations
required in practical applications.
As an example, Figure 11 shows the
profiling results for the many compu-
tations required in different neural-
network (training) applications [17].
Although we see that MVM (shown as
general matrix multiply) dominates,
it is necessary for complete architec-
tures to address the many other com-
putations and to do so programmably
and configurably. Importantly, the
other computations are character-

istically different than MVM in that
they apply to element-wise (low-/sin-
gle-dimensionality) operands. This
reduces the emphasis on data move-
ment that motivates IMC and instead
enables the use of conventional digi-
tal acceleration. However, it is criti-
cal that IMC now integrates robustly
and efficiently in larger heteroge-
neous architectures.

This raises two critical consider-
ations. First, robust integration in
larger architectures requires a well-
defined functional specification of
the IMC block. This is challenged by
analog circuit nonidealities, which
significantly affect computation SNR
and are typically difficult to character-
ize (e.g., due to process, temperature,
and voltage dependence) or statistical
in nature (e.g., due to T variations).
Second, heterogenous architectures
are often limited by data movement

800 µ

600 µ

400 µ

200 µ

0

P
ow

er
 (

W
)

–256 –128 0 128 256
XAC Value

Measurement at VDD = 0.6 V

1 mA/Column

1.2

1
0.8
0.6
0.4
0.2

0

B
L

V
ol

ta
ge

 (
V

)

BLb

BL

2 4 6 8 10
Time (ns)

(a) (b)

FIGURE 10: An illustration of power-delivery considerations in IMC: the (a) static current
drive [15] and (b) dynamic current drive [7].

Speech
(RNN)

Language
(DNN)
Vision
(CNN)

BN50
Char

LSTM
Nat Lang

VGG
AlexNet

0 10 20 30 40 50 60 70 80 90 100

gemm
calcError
axpy

lowering
tanh
saturate

softmax
tanhGrad
relu

rnorm1
sigmoid
reluGrad

rnorm2
sigmoidGrad
matrix assign

General Matrix Multiply
(~256 × 2,300 = 590-k Elements)

Single-/Few-Word Operands
(Traditional, Near-Memory Acceleration)

(%)

Speech
(RNN)

anguage
(DNN)
Vision
(CNN)

BN50
Charr

LSTM
Nat Lang

VGG
AlexNet

0 10 20 30 40 50 60 70 80 90 100

gemm
calcError
axpy

lowering
tanh
saturate

softmax
tanhGrad
relu

rnorm1
sigmoid
reluGrad

rnorm2
sigmoidGrad
matrix assign

(%)

FIGURE 11: The range of computations required in neural-network applications [17]. BN:
batch normalization; Char: character level; LSTM: long short-term memory; Nat Lang: natural
language.

Authorized licensed use limited to: National Taiwan University. Downloaded on October 29,2020 at 10:12:46 UTC from IEEE Xplore. Restrictions apply.

50 SUMMER 20 19 IEEE SOLID-STATE CIRCUITS MAGAZINE

and computation control between
accelerators. Efficient integration thus
requires a proper and flexible inter-
face design between the highly par-
allel IMC inputs/outputs and more
typical microprocessor blocks as well
as specialized, domain-specific archi-
tectures matched to the dataflow in
classes of applications. Although re -
cent progress has been made in these
areas, considerable opportunities for
further research remain.

System Challenges
Computing systems must be able to
support mapping of broad sets of
applications. This raises the need
for virtualization, where the limited
hardware available is repurposed,
reconfigured, and sequenced at
runtime to efficiently support the
execution of desired computations,
typically specified through software.
This is usually done through optimiz-
ers and automatic code generators
in the compiler stack, which encap-
sulate algorithms for optimally map-
ping computations to the hardware.
Given the significantly different
physical tradeoffs presented by IMC
(see the section “IMC Fundamentals”)
compared to conventional digital
architectures, the algorithms must be
carefully thought through to avoid
losing the potential gains presented
by IMC at the circuit level.

As an example, an immediate con-
cern is the energy and latency costs
of configuring or loading stored
data in IMC. While IMC reduces the
costs of MVM computation, it doesn’t
change the costs of loading data in
the memory circuits. Thus, gains are
derived only if MVM computation
costs dominate at the system level.
This depends on amortizing the data-
loading costs through computational
reuse. One way to analyze this is the
widely used roof-line plot (Figure 12),
where the breakpoint between load-
ing-bound and compute-bound
IMC operation occurs at the compute
intensity (i.e., the number of com-
pute operations performed on each
of the loaded data), with the com-
putation energy/throughput costs
equaling the data-loading energy/
throughput cost.

To illustrate, Figure 12 shows the
example of loading data from off-chip
DRAM. But it emphasizes the impor-
tance of evaluating IMC considering
its bandwidth/energy tradeoffs
together with different applications.
Specifically, the IMC bandwidth/
latency gains push the breakpoint to
higher compute-intensity applications.
However, as an example, the trend
toward reducing operand precision
in neural-network applications [2]–[4]
can enable loading from smaller, more
efficient embedded memories or fixed

storage in IMC modules entirely, for
specific (smaller) neural networks and
use cases.

Prospects and Current
State of the Art
While IMC presents a wide range of
challenges, the initial promise it has
shown and recent approaches that
have been proposed to harness/over-
come the underlying tradeoffs sug-
gest it will be a vital area for ongoing
research, especially toward platforms
of practical scale and complexity. A
few vectors for future research and
their current states are reviewed next.

Emerging Memory Technologies
Emerging memory technologies rep-
resent a key vector for IMC research.
The primary motivation is the poten-
tial for density scaling they present
compared to SRAM. Indeed, increas-
ing the scale of IMC based on resistive
memory technologies (RRAM, MRAM,
and PCM) has recently been demon-
strated [8]–[10], [18], with even greater
progress likely as foundry options for
these technologies emerge. The pri-
mary challenge posed with regard to
the underlying SNR tradeoff in IMC is
readout of the computation result. In
particular, the technologies present
varying levels of resistance and resis-
tance contrast, but they are generally
much more limited than the on–off
ratio or transconductance presented
by MOSFETs in SRAM bit cells. The
bit-cell computations thus possibly
lead to lower signal values, potentially
leading as well to a regime limited by
readout complexity (energy and area)
[9], which, in turn, scales in proportion
to the number of bit cells involved. In
this regime, the possible amortiza-
tion of readout complexity is limited,
and IMC gains are thus strongly deter-
mined by the characteristics of the bit
cells themselves. Therefore, a criti-
cal direction for such research is the
codesign of IMC architectures with bit-
cell technology.

The readout complexity can have
important implications on IMC den-
sity. Specifically, crossbar architec-
tures tend to impose more stringent

O
P

/s

O
P

/s
/W

Loading
Bound

Compute
Bound

Loading
Bound

Compute
Bound

Compute Intensity Compute Intensity

1
BWLoad

CI
OP/sComp

= ELoad
CI

OP/s/WComp

=

FIGURE 12: The roof-line plots identifying loading-bound and compute-bound regimes.

The IMC architecture is based on an array
of six-transistor static random-access memory
bit cells, and it includes periphery for
two modes of operation.

Authorized licensed use limited to: National Taiwan University. Downloaded on October 29,2020 at 10:12:46 UTC from IEEE Xplore. Restrictions apply.

 IEEE SOLID-STATE CIRCUITS MAGAZINE SUMMER 20 19 51

readout challenges (e.g., to manage
possible interference between read-
out columns), making the readout-
circuit area significant and, again,
scaling with array size. On the other
hand, one-T, one-resistor (R) struc-
tures are typically denser than SRAM
but now limited by MOSFET scaling.
Further, the asymmetry in device
characteristics between the T and
R (memory device) often imposes
additional area overheads to resolve
(e.g., the use of two complementary
bit cells).

An additional motivation for emerg-
ing resistive memory technologies is
nonvolatility, which has the poten-
tial to lower power, especially in
duty-cycled scenarios. This holds sig-
nificant promise but will need to be
evaluated in application use cases.
Additionally, nonvolatility often lim-
its the number of write cycles, posing
challenges for hardware-virtualiza-
tion approaches.

Algorithmic Codesign
Machine-learning inference has emerged
as one of the biggest drivers for IMC,
both because the computations have
driven platforms to their energy
and throughput limits and because
the computations are dominated by
MVM, which limits the gains possible
from digital accelerators. Interest-
ingly, machine-learning inference
presents distinct opportunities for

addressing the SNR tradeoff in IMC
through algorithmic approaches.
Machine-learning inference involves
specifying a parametric model of
how data statistically relate to infer-
ences (decisions) of interest and then
training the model parameters using
available data that are representative
of the statistics. In this way, statis-
tical parameter optimization for a
given model affords flexibility in the
choice of actual model, which can
be selected for computational effi-
ciency. For example, this aspect has
been exploited toward aggressive
quantization [2], which has already
been shown to yield benefits for IMC.
But it can also be exploited to over-
come computational noise arising
from analog circuit nonidealities lim-
iting IMC.

Because the nonidealities can be
statistical (e.g., variations) or determin-
istic (e.g., nonlinearity), a distinction
can be made between hardware-spe-
cific training of model parameters
and hardware-generalized training of
model parameters. In hardware-spe-
cific training, the specific variation-
affected instance of hardware is used
in the training process to tune param-
eters to the specific hardware [7], [19].

This has the drawback of incurring
instance-by-instance training costs,
and recent IMC demonstrations have
explored incorporating the associated
hardware support to minimize such
costs [19]. In hardware-generalized
training, a statistical model of the dis-
tribution of variation-affected hard-
ware is used in the training process
to learn parameters one time [20].
This avoids the need for instance-
by-instance training. For the example
shown in Figure 13 of MRAM-based
IMC implementing a neural network
for vision classification (CIFAR-10), we
see that this can overcome significant
variation in the hardware (accuracy is
maintained at several multiples of the
actual MRAM-conductance variation).

Such algorithmic approaches show
considerable promise, presenting a
rich area for research. Specifically, a
critical challenge that will need to be
addressed is that operation relying
on algorithmic codesign will inher-
ently disrupt hierarchical abstraction
based on the functional specifica-
tion employed in architectural design
today. Thus, new, possibly statistical
approaches to composable architec-
tural design and application mapping
will likely be required.

Training

Testing

G

gi

Noisy
Forward

Noisy
Forward

Backward

Prediction y

"

Prediction
y (x, θ(L), Zi)

"

Loss Function L

Model
Parameters
θ (x, G, L)

100

90
80

70

60

50

40

30

20

10
1 2 3 4 5 6 7 8 9 10

Normalized MRAM Cell Standard Deviation

MRAM-Based BNN Simulation
(Applied to CIFAR-10)

"

L = y – y(x, θ, G)2

"

L = y – y(x, θ)2

A
cc

ur
ac

y

FIGURE 13: An illustration of an algorithm approach to overcome analog nonidealities [20]. BNN: binarized-neural-network.

Instead of accessing raw bits row by row, IMC
accesses a computation result over many/all bits,
thereby amortizing the accessing costs.

Authorized licensed use limited to: National Taiwan University. Downloaded on October 29,2020 at 10:12:46 UTC from IEEE Xplore. Restrictions apply.

52 SUMMER 20 19 IEEE SOLID-STATE CIRCUITS MAGAZINE

High-SNR Circuit Design
The SNR tradeoff underlying IMC ulti-
mately limits its computation scale,
integration in complex architectures,
and programmability. Recent work
has thus proposed circuit approaches
for enhancing computation SNR. Fig-
ure 14(a) shows the bit-cell circuit
used in [11], where a 1-b input-vector
element combines with 1-b of stored
data to yield a 1-b multiplication out-
put, used to charge a local bit-cell
capacitor rather than provide current
on BL/BLb. Accumulation is then per-
formed by switched-capacitor charge
redistribution across all the equal-
sized bit-cell capacitors in a column.
Multiplication linearity is inherently
ensured by binary bit-cell output,
while accumulation error is primar-
ily set by capacitor mismatch. Thanks
to lithographic precision in modern,
very-large-scale integration technolo-
gies, the metal-finger capacitors used
exhibit excellent matching and tem-
perature stability, with analysis sug-
gesting that the column dimension
can be scaled to thousands of rows
before mismatch limits computation
SNR. Furthermore, the metal-finger
capacitors are laid out above the bit-
cell Ts, occupying no additional area,
such that the bit-cell area overhead

with the required additional devices
is just 80% compared to a standard
6T-SRAM bit cell (laid out using logic
rules). Figure 14(b) shows the mea-
sured column transfer function used
to implement the preactivation of a
binarized neuron with 4,608 inputs
(i.e., column dimension), with error
bars showing the standard devia-
tion over 512 on-chip neurons. The
highly linear and stable computation
achieved has enabled breakthrough
scale for IMC of 2.4 Mb as well as
demonstration of practical neural net-
works (e.g., 10 layers) with area-nor-
malized throughput of 1.5 1-b TOP/s/
mm2 and energy efficiency of 866 1-b
TOP/s/W (the highest known for neu-
ral-network accelerators).

Programmable IMC
Having substantially addressed the
underlying SNR tradeoff and demon-
strated increased scale, the capaci-
tor-based approach further enables
integration in complex heterogeneous
architectures and programmability.
Figure 15(a) shows the architectural
block diagram of a silicon prototype in
65-nm CMOS, representing the current
state of the art [12]. The architecture
integrates a compute-in-memory unit
(CIMU), with a CPU (RISC-V), direct-

memory accessing (DMA) unit, sched-
uling hardware (timers), interfaces
[universal asynchronous receiver-
transmitter (UART) and general-pur-
pose input/output (GPIO)], and 128 kB
of standard program and data mem-
ory. The CIMU extends the IMC hard-
ware from [11] in three key ways.

First, it introduces interfaces for
efficiently converting data between
the external 32-b architecture of
the processor and the highly parallel
bit-wise architecture of the IMC hard-
ware. This enables maximum band-
width utilization of the architectural
resources (e.g., busses) for bringing
data to/from the CIMU and enables its
integration in the standard processor
memory space. Such a tightly coupled
IMC accelerator architecture is ben-
eficial for enhancing and evaluating
programmability.

Second, it introduces column-output
ADCs and configurable near-memory
computing (NMC), physically aligned
with IMC outputs, for element-wise
computations on MVM output vectors.
The architecture is designed for embed-
ded neural-network inference. Thus,
the NMC supports operand scaling, off-
setting, shifting, averaging, masking,
nonlinear transformation, and so on for
computations such as activation func-
tions, batch normalization, and pool-
ing. This enables the demonstration
and evaluation of integration of IMC in
heterogenous architectures.

Third, it enables bit-scalable IMC
from 1 to 8 b via a bit-parallel/bit-serial
(BPBS) scheme. Here, multiple bits of
the matrix elements are mapped to
parallel columns, while multiple bits
of the input-vector elements are pro-
vided serially. Each column opera-
tion thus corresponds to MAC (vector
inner product) between binary vector
elements. Following ADC digitiza-
tion, the column operations involved
are then bit shifted to apply proper
binary weighting and summed in the
NMC to yield the multibit computation
result. In this way, energy and area-
normalized throughput scale linearly
with the number of matrix-element
bits and vector-element bits, yielding
more favorable scaling than typically

bnbn

am,n am,n

1.2 fF

6′d63

6′d0B
at

ch
-N

or
m

al
iz

ed
A

ct
iv

at
io

n
F

un
ct

io
n

S
w

itc
hi

ng
 T

hr
es

ho
ld

 (
6

b)

–4,608 +4,6080
Preactivation PAn Value

(Measured)

Error Bars Show
Sigma Over 512
(3 × 3 × 512)
On-Chip
Neurons

Neuron Transfer Function

(b)(a)

FIGURE 14: The high circuit SNR enabled by capacitor-based IMC [11]: the (a) bit-cell circuit
and (b) measured column transfer function.

Recent approaches that have been proposed
to harness/overcome the underlying
tradeoffs suggest it will be a vital area
for ongoing research.

Authorized licensed use limited to: National Taiwan University. Downloaded on October 29,2020 at 10:12:46 UTC from IEEE Xplore. Restrictions apply.

 IEEE SOLID-STATE CIRCUITS MAGAZINE SUMMER 20 19 53

achieved with purely analog compu-
tation [21]. It should be noted that,
with such computation, quantization
is different than with that of stan-
dard integer compute. This is because
the high column dimensionality (i.e.,
2,304) leads to higher dynamic range

than that supported by the ADC (i.e.,
an 8-b ADC chosen to balance energy
and area overheads). This repre-
sents another form of throughput/
energy tradeoff with SNR, in this case
arising from computation (rather
than communication) amortization.

Nonetheless, for the quantization range
of interest in neural-network applica-
tions (2–6 b), a signal-to-quantization
noise ratio close to integer compute
is achieved. Further, the determinis-
tic nature of the computation enables
robust modeling, which can be readily

To E2PROM

To DRAM
Controller

(data) (addr.) (data/addr.)
8 13 32

Boot-
Loader

Ext.
Mem. I/F

Program
Memory
(128 kB)

Data
Memory
(128 kB)

CPU
(RISC-V) DMA

Timers GPIO UART
Config

APB Bus

AXI Bus

32

32

32
Tx Rx

Config.
Regs.

Compute-In-Memory
Unit (CIMU)

• 590 kb
• 16 Bank

1) Deep-Learning Training Libraries
(Keras)

2) Deep-Learning Inference Libraries
(Python, MATLAB, C)

Standard Keras Libraries:

Custom Libraries:
(INT/CHIP Quant.)

Dense (units, . . .)
Conv2D (filters, kernal_size, . . .)
. . .

Chip_mode = True
Outputs = QuantizedConv2D (inputs,
 weights, biases, layer_params)
 Outputs = BatchNormalization (inputs,
 layer_params)

QuantizedDense (units, nb_input=4, nb_weight=4,)
 chip_quant=False, . . .)
QuantizedConv2D (filters, kernal_size, nb_input=4,
 nb_weight=4, chip_quant=False, . . .)

QuantizedDense (units, nb_input=4, nb_weight=4,)
 chip_quant=True, . . .)
QuantizedConv2D (filters, kernal_size, nb_input=4,
 nb_weight=4, chip_quant=True, . . .)

High-Level Network Build (Python):

Function Calls to Chip (Python):

Embedded C:

. . .

chip.load_config (num_tiles, nb_input=4,
 nb_weight=4)
chip.load_weights (weights2load)

chip_config ();
load_weights (); load_image ();

read_dotprod_result (image_filter_command);
image_filter (chip_command);

chip.load_image (image2load)
Outputs = chip.image_filter ()

chip_command = get_uart_word ();

(a)

(b)

FIGURE 15: The programmable, bit-scalable IMC architecture: the (a) heterogeneous microprocessor architecture [12] and (b) software libraries
for neural-network training and inference.

Authorized licensed use limited to: National Taiwan University. Downloaded on October 29,2020 at 10:12:46 UTC from IEEE Xplore. Restrictions apply.

54 SUMMER 20 19 IEEE SOLID-STATE CIRCUITS MAGAZINE

incorporated in neural network train-
ing, as is done for standard quantized
neural-network training.

To validate and exploit the CIMU’s
programmability, software librar-
ies have been developed for neural-
network training and inference, as
shown in Figure 15(b). The training
libraries are for domain-specific
design frameworks (Keras and Ten-
sorFlow), providing a superclass for
all supported neural-network lay-
ers. Arguments are offered for the
activation and weight quantiza-
tion level as well as a flag to switch
between integer quantization and
the BPBS quantization performed by
the CIMU. This enables training for
the quantization approach adopted
as well as evaluation against integer
quantization (with equivalent perfor-
mance consistently observed thus
far). The inference libraries are for
two types of implementation. First,
Python and MATLAB libraries are
provided for implementing the top-
level data and control flow on a host
processor, making function calls to
the chip (over USB) for selected com-
pute-intensive operations (such as
MVMs, activation functions, and batch
normalization). Second, C libraries
are provided for execution on the
embedded CPU, for both receiving
the function calls and implementing
inference systems fully on the chip.

Conclusions and Summary
IMC has the potential to address a criti-
cal and foundational challenge affect-
ing computing platforms today—that
is, the high energy and delay costs of
moving data and accessing data from
memory. In doing so, it takes a disrup-
tive approach to computing systems
that requires integrative research
across the computing stack. This

has appropriately ignited a wide
range of research. It is necessary to
understand the foundational tradeoffs
arising from IMC to better grasp the
challenges that must be addressed
and evaluate the different approaches
being proposed. From here, perspec-
tives may be derived regarding the
potential gains IMC can offer, the con-
texts and conditions on which these
depend, and the support they require
across the compute stack.

IMC gives rise to a bandwidth/
latency/energy-versus-SNR tradeoff,
which has led to the achievements and
limitations observed in recent proto-
types. These prototypes have shown
the potential for 10× gains simultane-
ously in energy efficiency and area-
normalized throughput compared to
fully optimized digital accelerators.
But they have also been restricted in
the scale and integration of IMC in the
heterogeneous architectures required
for practical computing systems. Re -
cent work has begun to address these
restrictions, with IMC demonstra-
tions advancing to substantial scale,
sophisticated and programmable
architectures being developed, and
software libraries being integrated
into high-level application-design
frameworks. These have transformed
IMC into a practical technology for
addressing foundational challenges
in future computing systems, espe-
cially for energy- and throughput-
constrained machine learning.

Acknowledgments
We thank Prof. N. Shanbhag (Uni-
versity of Illinois at Urbana–Cham-
paign), Prof. P. Ramadge (Princeton
University), E. Nestler, J. Yedidia,
M. Tikekar, and P. Nadeau (Analog
Devices Inc.) for extremely valuable
collaboration and input.

References
[1] M. Horowitz, “Computing’s energy prob-

lem (and what we can do about it),” in
Proc. 2014 IEEE Int. Solid-State Circuits
Conf. Dig. Tech. Papers, pp. 10–14.

[2] I. Hubara, M. Courbariaux, D. Soudry, R. El-
Yaniv, and Y. Bengio, “Quantized neural net-
works: Training neural networks with low
precision weights and activations,” J. Mach.
Learning Res., vol. 18, no. 1, pp. 6869–6898,
2017. [Online]. Available: http://dl.acm.org/
citation.cfm?id=3122009.3242044

[3] J. Choi, P. I.-J. Chuang, Z. Wang, S. Ven-
kataramani, V. Srinivasan, and K. Gopal-
akrishnan, Bridging the accuracy gap for
2-bit quantized neural networks (QNN).
2018. [Online]. Available: http://arxiv
.org/abs/1807.06964

[4] S. Gupta, A. Agrawal, K. Gopalakrishnan,
and P. Narayanan, “Deep learning with
limited numerical precision,” in Proc.
32nd Int. Conf. Int. Conf. Machine Learn-
ing: Volume 37, 2015, pp. 1737–1746.

[5] N. P. Jouppi et al., “In-datacenter perfor-
mance analysis of a tensor processing
unit,” in Proc. 44th Annu. Int. Symp. Com-
puter Architecture, 2017, pp. 1–12.

[6] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S.
Emer, “Efficient processing of deep neu-
ral networks: A tutorial and survey,” Proc.
IEEE , vol. 105, no. 12, pp. 2295–2329,
2017. doi: 10.1109/JPROC.2017.2761740.

[7] J. Zhang, Z. Wang, and N. Verma, “In-
memory computation of a machine-
learning classifier in a standard 6T SRAM
array,” IEEE J. Solid-State Circuits, vol. 52,
no. 4, pp. 915–924, 2017. doi: 10.1109/
JSSC.2016.2642198.

[8] X. Guo et al., “Fast, energy-efficient, ro-
bust, and reproducible mixed-signal neu-
romorphic classifier based on embedded
NOR flash memory technology,” in Proc.
2017 IEEE Int. Electron Devices Meeting,
pp. 6.5.1–6.5.4.

[9] F. Su et al., “A 462GOPs/j RRAM-based
nonvolatile intelligent processor for en-
ergy harvesting IoE system featuring non-
volatile logics and processing-in-memo-
ry,” in Proc. 2017 Symp. VLSI Technology,
pp. C260–C261.

[10] W.-H. Chen et al., “A 65nm 1Mb nonvolatile
computing-in-memory ReRAM macro with
sub-16ns multiply-and-accumulate for
binary DNN AI edge processors,” in Proc.
2018 IEEE Int. Solid- State Circuits Conf.,
pp. 494–496.

[11] H. Valavi, P. J. Ramadge, E. Nestler, and
N. Verma, “A 64-tile 2.4-Mb in-memory-
computing CNN accelerator employing
charge-domain compute,” IEEE J. Sol-
id-State Circuits, vol. 54, no. 6, pp. 1–11,
2019.

[12] H. Jia, Y. Tang, H. Valavi, J. Zhang, and N.
Verma, A microprocessor implemented
in 65nm CMOS with configurable and bit-
scalable accelerator for programmable in-
memory computing. 2018. [Online]. Avail-
able: http://arxiv.org/abs/1811.04047

[13] A. Biswas and A. P. Chandrakasan, “CONV-
SRAM: An energy-efficient SRAM with
in-memory dot-product computation
for low-power convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol.
54, no. 1, pp. 217–230, 2019. doi: 10.1109/
JSSC.2018.2880918.

[14] J. Wang et al., “14.2 a compute SRAM with
bit-serial integer/floating-point opera-
tions for programmable in-memory vec-
tor acceleration,” in Proc. 2019 IEEE Int.
Solid-State Circuits Conf., pp. 224–226.

[15] Z. Jiang, S. Yin, M. Seok, and J.-S. Seo,
“XNOR-SRAM: In-memory computing SRAM
macro for binary/ternary deep neural

IMC has the potential to address a critical and
foundational challenge affecting computing
platforms today—that is, the high energy and
delay costs of moving data and accessing data
from memory.

Authorized licensed use limited to: National Taiwan University. Downloaded on October 29,2020 at 10:12:46 UTC from IEEE Xplore. Restrictions apply.

 IEEE SOLID-STATE CIRCUITS MAGAZINE SUMMER 20 19 55

networks,” in Proc. 2018 IEEE Symp. VLSI
Technology, pp. 173–174.

[16] M. Kang, S. K. Gonugondla, A. Patil, and
N. R. Shanbhag, “A multi-functional in-
memory inference processor using a
standard SRAM array,” IEEE J. Solid-State
Circuits, vol. 53, no. 2, pp. 642–655, 2018.
doi: 10.1109/JSSC.2017.2782087.

[17] B. Fleischer et al., “A scalable multi-ter-
aOPS deep learning processor core for AI
training and inference,” in Proc. 2018 IEEE
Symp. VLSI Circuits, pp. 35–36.

[18] C.-X. Xue et al., “24.1 a 1Mb multibit Re-
RAM computing-in-memory macro with
14.6ns parallel MAC computing time for
CNN based AI edge processors,” in Proc.
2019 IEEE Int. Solid-State Circuits Conf.,
pp. 388–390.

[19] S. K. Gonugondla, M. Kang, and N. Shan-
bhag, “A 42pJ/decision 3.12TOPS/W ro-
bust in-memory machine learning classi-
fier with on-chip training,” in Proc. 2018
IEEE Int. Solid-State Circuits Conf., pp.
490–492.

[20] B. Zhang, L.-Y. Chen, and N. Verma, “Sto-
chastic data-driven hardware resilience
to efficiently train inference models for
stochastic hardware implementations,” in
Proc. 2019 IEEE Int. Conf. Acoustics, Speech
and Signal Processing, pp. 1388–1392.

[21] R. Sarpeshkar, “Analog versus digital: Extrap-
olating from electronics to neurobiology,”
Neural Comput., vol. 10, no. 7, pp. 1601–1638,
1998. doi: 10.1162/089976698300017052.

About the Authors
Naveen Verma (nverma@princeton
.edu) received his B.A.Sc. degree from
the University of British Columbia,
Vancouver, Canada, in 2003 and his
M.Sc. and Ph.D. degrees from the
Massachusetts Institute of Technol-
ogy, Cambridge, in 2005 and 2009,
respectively. He is a professor in the
Department of Electrical Engineering
at Princeton University, New Jersey,
where his research focuses on sys-
tems for intelligent sensing, including
sensors based on large-area electron-
ics, algorithms for machine percep-
tion and control employing machine
learning, and heterogeneous comput-
ing platforms exploiting in-sensor
and in-memory computing. He is a
Member of the IEEE.

Hongyang Jia (hjia@princeton
.edu) received his B.Eng. degree in
microelectronics from Tsinghua Uni-
versity, Beijing, in 2014, and his M.A.
degree in electrical engineering from
Princeton University, New Jersey, in
2016, where he is currently pursuing
his Ph.D. degree. He is with the Depart-
ment of Electrical Engineering at
Princeton, where his research focuses
on ultralow-energy system design for

inference applications. His research
interests include programmable in-
memory computing platforms and
CMOS IC design leveraging approxi-
mate computing. He received the
Analog Devices Outstanding Stu-
dent Designer Award in 2017. He is a
Student Member of the IEEE.

Hossein Valavi (hvalavi@princeton
.edu) received his B.Sc. degree in elec-
trical engineering from the Sharif Uni-
versity of Technology, Tehran, Iran, in
2013 and his M.A. degree in electrical
engineering from Princeton University,
New Jersey, in 2015, where he is cur-
rently pursuing his Ph.D. degree. His
research focuses on ultralow-energy
system design for signal processing
and machine-learning applications.
He was a recipient of the Analog De -
vices Outstanding Student Designer
Award in 2016. He is a Student Mem-
ber of the IEEE.

Yinqi Tang (yinqit@princeton.edu)
received his B.S. degree in micro-
electronics from Fudan University,
Shanghai, China, in 2014 and his M.A.
degree in electrical engineering from
Princeton University, New Jersey, in
2016, where he is currently pursuing
his Ph.D. degree in the Department of
Electrical Engineering. His research
interests include energy-efficient
hardware systems for machine-
learning and deep-learning applica-
tions, focusing on both algorithmic
and hardware design. He is a Student
Member of the IEEE.

Murat Ozatay (mozatay@princeton
.edu) received his B.Sc. degree in elec-
trical and electronics engineering
from the Middle East Technical Uni-
versity, Ankara, Turkey, in 2015 and
his M.A. degree in electrical engineer-
ing from Princeton University, New
Jersey, in 2017, where he is current-
 ly pursuing his Ph.D. degree in the
Department of Electrical Engineer-
ing. His research focuses on bringing
together algorithms and insights for
learning with technologies and sys-
tems for advanced sensing. His other
research interests include machine
learning, artificial intelligence, the
Internet of Things, and the design of

very-large-scale integration systems.
He is a Student Member of the IEEE.

Lung-Yen Chen (lungyenc@princeton
.edu) received his B.S. degree in elec-
trical engineering from National Tai-
wan University, Taipei, in 2011 and
his M.A. degree in electrical engineer-
ing from Princeton University, New
Jersey, in 2014, where he is currently
pursuing his Ph.D. degree in the
Department of Electrical Engineering.
His research interests include digital
architectures and circuit design for in-
memory computing and multimedia
applications, with emerging technolo-
gies such as magnetic random-access
memory and 3D integration. He is a
Student Member of the IEEE.

Bonan Zhang (bonanz@princeton
.edu) received his B.Eng. degree in
electrical and computer engineering
from McGill University, Montréal, in
2017 and his M.A. degree in electrical
engineering from Princeton Univer-
sity, New Jersey, in 2019, where he is
currently pursuing his Ph.D. degree in
the Department of Electrical Engineer-
ing. His research interests include
IC design for in-memory computing
architecture with emerging technolo-
gies, such as magnetic random-access
memory, and exploring algorithmic
approaches for hardware relaxation
to enable machine-learning applica-
tions. He received the Analog Devices
Outstanding Student Designer Award
in 2019. He is a Student Member of
the IEEE.

Peter Deaville (deaville@princeton
.edu) received his B.S. degree in elec-
trical engineering from the Univer-
sity of Maryland, College Park, in
2018. He joined Princeton University,
New Jersey, in the spring of 2019 as
a Ph.D. student in the Department
of Electrical Engineering, where his
research focuses on exploring in-
memory computing using magnetic
random-access memory technology.
His other research interests include
circuit design for machine learning,
leveraging emerging methods and
technologies. He is a Student Member
of the IEEE.

Authorized licensed use limited to: National Taiwan University. Downloaded on October 29,2020 at 10:12:46 UTC from IEEE Xplore. Restrictions apply.

