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 igh-dimensional-
ity matrix-vector 
mult ip l ic at ion 
(MVM) is a  dominant 

kernel in signal-pro -
cessing and machine-learning com-
putations that are being deployed in 
a range of energy- and throughput-
constrained applications. In-memory 
computing (IMC) exploits the structural 
alignment between a dense 2D array 
of bit cells and the dataflow in MVM, 
enabling opportunities to address com-
putational energy and throughput. 
Recent prototypes have demonstrated 
the potential for 10× benefits in both 
metrics. However, fitting computation 
within an array of constrained bit-cell 
circuits imposes a number of chal-
lenges, including the need for ana-
log computation, efficient interfacing 
with conventional digital accelerators 
(enabling the required programmabil-

ity), and efficient virtualization of the 
hardware to map software. This article 
provides an overview of the fundamen-
tals of IMC to better explain these chal-
lenges and then identifies promising 
paths forward among the wide range 
of emerging research.

Communication Cost
The computational requirements in 
emerging applications of machine 
learning and signal processing are 
pushing platforms to their energy-
efficiency and throughput limits. 
Hardware specialization has proven 
to be critical, with digital accel-
erators achieving 10–100× higher 
energy efficiency and speed than 
general-purpose processors. How-
ever, these gains apply primarily to 
computation, not memory accessing 
and, more generally, data movement 
[1]. Increasingly, the applications of 
interest are datacentric, involving 
large data sets or high-dimensional-
ity data structures. This shifts the 

emphasis toward data movement, 
which unfortunately imposes limits 
on the gains possible from conven-
tional digital acceleration.

A manifestation of this is the widely 
recognized “memory wall.” Although 
often associated with accessing data 
from off-chip memory, the problem 
is more fundamental, arising in any 
architecture that separates memory 
and computation. Storing data in 
physical bit cells requires area, which 
thus scales with the amount of data to 
be stored. This raises a corresponding 
communication cost for moving data 
from the point of storage to the point 
of computation, outside the memory. 
To illustrate this cost, Figure 1 com-
pares the energy required to access 
one word of data (64 b) from differ-
ent-sized memories in a 45-nm tech-
nology to the energy of multiplication 
operations (considering the lowered 
precision levels that are increasingly 
relevant for deep-learning inference 
computations [2]–[4]).
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Given that the communication cost 
is fundamental, computing architec-
tures cannot avoid it, but they can 
attempt to amortize it. For example, 
general-purpose architectures employ 
caching in a memory system. This in -
volves successively larger memories 
with correspondingly larger communi-
cation costs. However, those costs are 
incurred only when bringing data into 
the smaller memories, and then the 
statistical property of locality ensures 
that data are much more likely to be 
used for subsequent computations than 
data left in the larger memories. Spe-
cialized architectures being designed 

for specific computations can perform 
even more aggressive and determinis-
tic amortization. For example, Figure 2 
considers the case of MVM ,c bA #=v v  
which has motivated spatial architec-
tures. Here, processing engines (PEs) 
are arranged in a 2D array, matching 
the dataflow of MVM [5], [6]. PEs can 
have small, efficient local memories, 
storing only their intended operands. 
Furthermore, they move a computa-
tional result to adjacent PEs, which 
effectively amortizes the movement 
of all previously accessed operands.

MVMs represent a particularly im -
portant compute kernel due to their 

prominence in signal-processing and 
machine-learning computations. For-
tunately, as seen in the case of spatial 
architectures, MVMs also present signif-
icant opportunities for amortization.

Next, we describe the basic approach 
of IMC, which exploits more aggres-
sive amortization within the memory 
array itself.

IMC Fundamentals
Figure 3 illustrates the approach of 
IMC, using the architecture from [7] as 
an example. The IMC architecture is 
based on an array of six-transistor static 
random-access memory (6T-SRAM) bit 
cells, and it includes periphery for two 
modes of operation. In SRAM mode, 
rows are accessed one at a time to 
read/write data via digital activation 
of a word line (WL). On the other hand, 
in IMC mode, multiple or all rows are 
accessed at once, using input data to 
activate the WLs. In the example, each 
WL digital-to-analog converter (WLDAC) 
applies an analog voltage correspond-
ing to an input-vector element, which 
thus modulates the bit-cell current. 
Taking the bitlines (BL/BLb) as a differ-
ential signal, the stored data then have 
the effect of multiplying the input-vec-
tor element by +1/–1, and the currents 
from all bit cells in a column accumu-
late, generating an analog discharge of 
BL/BLb. This yields a multiply–accu-
mulate (MAC) operation as required 
for MVM. Thus, instead of accessing 
raw bits row by row, IMC accesses a 
computation result over many/all bits, 
thereby amortizing the accessing costs. 
Note that such amortization is possible 
because of the structure of memory, 
where MVM involves mapping parallel 
input data to WLs and parallel com-
putation to bit cells with stored data, 
followed by reducing output data via 
accumulation. Thus, IMC can apply to 
any memory technology integrated in 
such a structure [8]–[10].

Bandwidth/Latency/Energy Versus 
Signal-to-Noise Ratio Tradeoff
The amortization performed by IMC 
changes the basic tradeoffs associated 
with memory accessing. Figure 4 ana-
lyzes the typical metrics of interest 
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The computational requirements in emerging 
applications of machine learning and signal 
processing are pushing platforms to their 
energy-efficiency and throughput limits.
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for memory (bandwidth, latency, and 
energy) and introduces a new metric 
relevant for computation, signal-to-
noise ratio (SNR), by comparing a 
conventional architecture with IMC. 
Consider accessing D bits of data from 
a D D#  memory [7]:

 ■ Bandwidth: In the conventional 
architecture, bandwidth scales as 
D /1 2  with the number of row-wise 
access cycles required. In IMC, 
bandwidth does not scale because 
all rows are accessed at once.

 ■ Latency: In the conventional ar-
chitecture, latency scales as D due 
to the D /1 2  access cycles required 
and D /1 2  scaling of access-cycle 
delay with the BL/BLb capacitance. 
In IMC, latency does not scale, be-
cause activating all WLs causes the 
total bit-cell discharge current to 
scale at the same rate as BL/BLb 
capacitance.

 ■ Energy: In the conventional archi-
tecture, energy scales as D /23  with 
the number of access cycles, BL/
BLb capacitance, and number of 
columns. In IMC, energy scales 
only as D, because all data are ac-
cessed in one cycle.

 ■ SNR: In the conventional architec-
ture, SNR does not scale because 
the implicit assumption is that 
BL/BLb discharge remains fixed to 
maintain the required data-sens-
ing margin. In IMC, SNR scales 
as /D1 /1 2  because accumulation 
over D /1 2  bit cells results in a cor-
responding increase of dynamic 
range. Fitting this in a fixed BL/
BLb swing causes a corresponding 
reduction of SNR.
From this first-order analysis, we 

see that IMC enables significant band-
width/latency/energy gains at the 
cost of SNR. Some important second-
ary factors should be kept in mind. 
First, the analysis focuses on BL/BLb 
communication costs, which typically 
do  minate in memory. However, IMC 
leaves WL activation costs unchanged 
(conventional and IMC architectures 
involve the same number of WL acti-
vations), somewhat reducing the total 
gains from IMC. Second, this analy-
sis does not consider BL/BLb swing 

optimization. Conventional memory 
often exploits reduced swing, whereas 
IMC may prefer full swing due to BL/
BLb dynamic-range requirements. 
Nonetheless, typical values of D /1 2  
(e.g., 128 in [7]) open up the potential 
for significant gains through IMC, as 
we will see later in the article. How-
ever, the SNR tradeoff is a primary 
concern, challenging the scale, reliable 
specification, and configurability/

programmability of computation, all 
of which are required for integration 
in modern computing platforms. Thus, 
emerging approaches to IMC must ad -
dress the underlying issue of SNR de -
monstrated against these challenges.

Comparison With  
Digital Architectures
Although the previous analysis com-
pared memory accessing in IMC with 
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Increasingly, the applications of interest are 
datacentric, involving large data sets or high-
dimensionality data structures.
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that in a canonical digital-acceler-
ator architecture, MVMs have mo -
tivated more specialized spatial 
architectures. In fact, IMC can itself 
be regarded as a spatial architec-
ture, but one where PEs are highly 
dense bit cells. Thus, the data-move-
ment and computation costs can 
be compared.

Figure 5(a) considers data move-
ment. One set of operands must 
move horizontally across the array 
(e.g., input-vector elements), one set 
can be stationary in the PEs (e.g., 
matrix elements), and one set must 
move vertically across the array (e.g., 

output-vector elements). In IMC, the 
horizontal movement is mitigated by 
the high density of bit cells, which 
are found to be 10–100× smaller in 
area (3–10× smaller in edge length) 
for corresponding MAC-computation 
hardware (e.g., [5] versus [7] and [11]). 
Furthermore, the vertical  movement is 
mitigated both by the high density 
of bit cells and because the high-
dynamic-range signal drives the capac-
itance of a single wire in analog IMC 
architectures and multiple wires in a 
digital architecture.

Figure 5(b) considers computa-
tion, using the design point of 4-b 

MACs and 1,024 dimensional vectors/ 
ma  trices as an example (relevant to cur-
rent trends in deep-learning inference 
systems). While this IMC architecture 
is restricted to 1-b stored operands, a  
recently proposed approach (descri -
bed later in the article) extends to 
multiple bits by performing 1-b MACs 
serially and in parallel columns, fol-
lowed by digitization, proper binary 
weighting (barrel shifting), and 
fi  nally summation of the outputs 
[12]. This approach exploits an addi-
tional form of amortization along 
the memory-column dimension, in 
terms of the operations required 
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for multibit computation. Namely, 
although IMC bit cells can perform 
1-b logical operations (XNOR and 
AND), digital PEs require multibit 
operation (full adder). As we will 
show, such amortization once again 
imposes an SNR tradeoff. Using sili-
con measurements and postlayout 
simulations in a 45-nm technology, 
we see that, over the storage, multi-
ply, accumulate, and data-movement 
operations performed by PEs, IMC 
holds the potential for 10× greater 
energy efficiency.

Current Standing of IMC
With IMC recently becoming an active 
research area, we have seen a num-
ber of prototype demonstrations 
that enable comparisons against  
digital-accelerator approaches. Fig-
ure  6(a) plots the area-normalized 
throughput versus energy efficiency 
of recent IMC and non-IMC proto-
types, showing that IMC enables 
roughly 10× gains in each metric, 
which is expected based on the 
aforementioned analysis. Although 
this represents significant prom-
ise, Figure 6(b) exposes the primary 
challenge: plotting the total scale of 
computation achieved (the amount 
in memory integrated in prototypes). 
With the exception of one design [11] 
(considered in detail in the “High-
SNR Circuit Design” section), IMC 
demonstrations have been highly 
limited in scale, primarily due to the 
fundamental SNR tradeoff described, 
especially in the context of analog 
computation. The following section 
takes a closer look at the challenges, 
using recent demonstrations as ex -
amples, to then motivate possible 
paths forward.

IMC Challenges and Approaches
Multiple IMC approaches have re  cently 
been proposed. To frame this discus-
sion, it is useful to relate these to the 
fundamental tradeoffs developed in 
the “Bandwidth/Latency/Energy 
Versus Signal-to-Noise Ratio Trad-
eoff” section. For example, although 
some designs perform computation in 
memory, they may activate only one or 

two WLs at a time (e.g., [13] and [14]). 
This prevents significant amortiza-
tion compared to standard memory 
accessing, yet it incurs the challeng -
 es of integrating computation in con-
strained bit-cell circuits (e.g., [13] 
requires adopting a 10-T bit cell, and 
[14] requires multiple memory-oper-
ation cycles). In such cases, standard 
memory accessing would likely be 
preferable, followed by computation 
just outside the memory array using 
less constrained circuits. Keeping in 
mind the fundamental IMC trad-
eoffs, the following sections survey 
the challenges, illustrated using recent 
design examples.

Circuit Challenges

Analog Nonidealities
To fit computation in constrained bit-
cell circuits, IMC commonly employs 
analog operation, leveraging richer T 
behavior than that allowed by digital 
switch-based abstraction. With regard 
to the SNR tradeoff, the increased 
sensitivity to variations and nonlin-
earities now becomes the dominant 
source of computation noise. For 
instance, Figure 7 shows the nonlin-
earity and variation (standard devia-
tion shown as error bars) of the BL/
BLb output with respect to one input-
vector element value in [7] and to the 

10e4

10e3

10e2

10e2

10e3

10

10

1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t (

G
O

P
/s

/m
m

2 )
O

n-
C

hi
p 

M
em

or
y 

S
iz

e 
(k

B
)

Khwa, ISSCC’18, 65 nm

Khwa, ISSCC’18, 65 nm

Zhang, VLSI’16, 130 nm

Zhang,
VLSI’16,
130 nm

Jiang,
VLSI’18,
65 nm

Jiang,
VLSI’18,
65 nm

Biswas,
ISSCC’18, 65 nm

Biswas,
ISSCC’18, 65 nm

Gonug,
ISSCC’18, 65 nm

Gonug,
ISSCC’18, 65 nm

Bankman,
ISSCC’18, 28 nm

Bankman,
ISSCC’18,

28 nm

Yuan, VLSI’18, 65 nm

Yuan, VLSI’18, 65 nm

Chen, ISSCC’16, 65 nm

Chen,
ISSCC’16,

65 nm

Yin, VLSI’17, 65 nm

Yin, VLSI’17, 65 nm

Shin, ISSCC’17, 65 nm
Ando, VLSI’17, 65 nm

Ando, VLSI’17, 65 nm

Moons, ISSCC’17, 28 nm

Moons,
ISSCC’17,
28 nm

Lee, ISSCC’18, 65 nm

Lee,
ISSCC’18,

65 nm

Valavi, VLSI’18, 65 nm

Valavi,
VLSI’18,
65 nm

10e–2 10e–1 1 10 10e2 10e3
Energy Efficiency (TOP/s/W)

(a)

10e–2 10e–1 1 10 10e2 10e3
Energy Efficiency (TOP/s/W)

(b)

IMC

Not IMC

FIGURE 6: A comparison of IMC and non-IMC prototypes: the (a) throughput versus energy 
efficiency and (b) total memory versus area efficiency. 

Authorized licensed use limited to: National Taiwan University. Downloaded on October 29,2020 at 10:12:46 UTC from IEEE Xplore.  Restrictions apply. 



48 SUMMER 20 19 IEEE SOLID-STATE CIRCUITS MAGAZINE 

overall accumulation result in [15]. 
Additionally, using T currents as the 
output signal of each bit cell also 
raises sensitivities to temperature, 
which can strongly impact carrier 
transport in semiconductors.

One way to mitigate the effects 
of T nonlinearity arising from BL/
BLb biasing is to employ low-swing 
signaling. However, the SNR trad-
eoff is then adversely affected by the 

increased impact of variations (and 
shot-noise sources) relative to the 
signal. In fact, higher computation 
SNR may be observed in practice by 
increasing swing [16]. Nonetheless, 
Figure 8 illustrates the approach 
in [16], also showing that the MAC 
operation possible in IMC columns 
can be used beyond MVMs. In this 
case, multibit data are stored in a col-
umn-major format, and different WL 

pulsewidths are applied in parallel 
for binary weighting, thereby yield-
ing an analog read operation of a mul-
tibit word (configurable mixed-signal 
computation is then performed in the 
array periphery).

An important direction for IMC 
is incorporating alternate memory 
technologies—for instance, nonvola-
tile technologies—that can enable 
the possibility of multilevel stor-
age, low-power duty-cycle operation, 
and increased density. The emerg-
ing memory technologies can include 
resistive RAM (RRAM), magnetic RAM 
(MRAM), and phase-change memory 
(PCM). Such technologies suffer from 
many of the same analog nonideali-
ties as SRAM-based IMC. For instance, 
Figure 9(a) shows the variation of 
MAC outputs from a NOR-flash imple-
mentation [8]. On top of this, such 
technologies are likely to exacerbate 
the challenges with analog readout. 
For instance, multilevel storage fur-
ther increases dynamic-range require-
ments, impacting the SNR tradeoff, 
and the relatively low resistance and 
low-resistance contrast of emerg-
ing memory technologies (RRAM and 
MRAM) increase the power and area of 
the readout circuitry, which already 
dominates in demonstrated systems 
[9], as shown in Figure 9(b).

Power Delivery
IMC leverages the parallel struc-
ture of memory. However, such par-
allel operation also elevates peak 
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power-delivery requirements in 
at least two ways. First, activation of 
many/all WLs is fundamental to the 
amortization performed and thus 
requires corresponding power deliv-
ery to the WL drivers. This must be 
addressed through power-grid density, 
especially because noise on the WL 
levels can translate directly to com-
putation noise. Second, operation of 
many/all bit cells is fundamental to the  
amortization performed. We can make 
a distinction between static and 
dynamic computation approaches. 
Figure 10(a) shows an example of static 
computation, employing a static buf-
fer at the bit-cell output [15]. In this 
case, activating many/all bit cells leads 
to currents of up to 1 mA in each col-
umn, challenging the feasibility of 
low-noise power delivery. Figure 10(b) 
shows an example of dynamic com-
putation, where the activated bit cells 
simply discharge the BL/BLb capaci-
tance such that the total charge deliv-
ered never exceeds that of a standard 
full-swing read [7]. This requires de -
signing against saturation of BL/BLb 
discharge, as is done in [7] by restrict-
ing WLDAC output range and minimiz-
ing BL/BLb leakage, which can result 
in computation noise.

Bit-Cell Stability
A consequence of accessing compu-
tational results rather than raw data 
is that activated bit cells are exposed 
to different data on BL/BLb than 
those stored. This raises the possi-
bility of disrupting their stored data. 
Two approaches have been pursued 
to guard against this. First, buffered 
cells have been employed, whereby 
the critical data-storage nodes are 
isolated from the computed BL/BLb 
value [15]. This has the drawback of 
degrading density. Second, suitable 
bit-cell biasing has been employed. 
This has included low-swing sig-
naling on BL/BLb such that bit-cell 
biasing remains close to standard 
SRAM read-condition biasing [16]. 
However, this adversely affects the 
SNR tradeoff. Alternatively, WL-bias-
ing has been employed, wherein the 
WL voltage is kept low [7]. In addi-

tion to limiting the bit-cell current 
to guard against BL/BLb saturation 
in dynamic computation, this can 
ensure adequate isolation of the 
bit-cell storage nodes from the com-
puted BL/BLb value.

Architectural Challenges
IMC primarily addresses MVM or 
other vector operations, which repre-
sent only a subset of computations 
required in practical applications. 
As an example, Figure 11 shows the 
profiling results for the many compu-
tations required in different neural-
network (training) applications [17]. 
Although we see that MVM (shown as 
general matrix multiply) dominates, 
it is necessary for complete architec-
tures to address the many other com-
putations and to do so programmably 
and configurably. Importantly, the 
other computations are character-

istically different than MVM in that 
they apply to element-wise (low-/sin-
gle-dimensionality) operands. This 
reduces the emphasis on data move-
ment that motivates IMC and instead 
enables the use of conventional digi-
tal acceleration. However, it is criti-
cal that IMC now integrates robustly  
and efficiently in larger heteroge-
neous architectures.

This raises two critical consider-
ations. First, robust integration in 
larger architectures requires a well-
defined functional specification of 
the IMC block. This is challenged by 
analog circuit nonidealities, which 
significantly affect computation SNR 
and are typically difficult to character-
ize (e.g., due to process, temperature, 
and voltage dependence) or statistical 
in nature (e.g., due to T variations). 
Second, heterogenous architectures 
are often limited by data movement 
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and computation control between 
accelerators. Efficient integration thus 
requires a proper and flexible inter-
face design between the highly par-
allel IMC inputs/outputs and more 
typical microprocessor blocks as well 
as specialized, domain-specific archi-
tectures matched to the dataflow in 
classes of applications. Although re -
cent progress has been made in these 
areas, considerable opportunities for 
further research remain.

System Challenges
Computing systems must be able to 
support mapping of broad sets of 
applications. This raises the need 
for virtualization, where the limited 
hardware available is repurposed, 
reconfigured, and sequenced at 
runtime to efficiently support the 
execution of desired computations, 
typically specified through software. 
This is usually done through optimiz-
ers and automatic code generators 
in the compiler stack, which encap-
sulate algorithms for optimally map-
ping computations to the hardware. 
Given the significantly different 
physical tradeoffs presented by IMC 
(see the section “IMC Fundamentals”) 
compared to conventional digital 
architectures, the algorithms must be 
carefully thought through to avoid 
losing the potential gains presented 
by IMC at the circuit level.

As an example, an immediate con-
cern is the energy and latency costs 
of configuring or loading stored 
data in IMC. While IMC reduces the 
costs of MVM computation, it doesn’t 
change the costs of loading data in 
the memory circuits. Thus, gains are 
derived only if MVM computation 
costs dominate at the system level. 
This depends on amortizing the data-
loading costs through computational 
reuse. One way to analyze this is the 
widely used roof-line plot (Figure 12), 
where the breakpoint between load-
ing-bound and compute-bound 
IMC operation occurs at the compute 
intensity (i.e., the number of com-
pute operations performed on each 
of the loaded data), with the com-
putation energy/throughput costs 
equaling the data-loading energy/
throughput cost.

To illustrate, Figure 12 shows the 
example of loading data from off-chip 
DRAM. But it emphasizes the impor-
tance of evaluating IMC considering  
its bandwidth/energy tradeoffs 
together with different applications. 
Specifically, the IMC bandwidth/
latency gains push the breakpoint to 
higher compute-intensity applications. 
However, as an example, the trend 
toward reducing operand precision 
in neural-network applications [2]–[4] 
can enable loading from smaller, more 
efficient embedded memories or fixed 

storage in IMC modules entirely, for 
specific (smaller) neural networks and 
use cases.

Prospects and Current  
State of the Art
While IMC presents a wide range of 
challenges, the initial promise it has 
shown and recent approaches that 
have been proposed to harness/over-
come the underlying tradeoffs sug-
gest it will be a vital area for ongoing 
research, especially toward platforms 
of practical scale and complexity. A 
few vectors for future research and 
their current states are reviewed next.

Emerging Memory Technologies
Emerging memory technologies rep-
resent a key vector for IMC research. 
The primary motivation is the poten-
tial for density scaling they present 
compared to SRAM. Indeed, increas-
ing the scale of IMC based on resistive 
memory technologies (RRAM, MRAM, 
and PCM) has recently been demon-
strated [8]–[10],  [18], with even greater 
progress likely as foundry options for 
these technologies emerge. The pri-
mary challenge posed with regard to 
the underlying SNR tradeoff in IMC is 
readout of the computation result. In 
particular, the technologies present 
varying levels of resistance and resis-
tance contrast, but they are generally 
much more limited than the on–off 
ratio or transconductance presented 
by MOSFETs in SRAM bit cells. The 
bit-cell computations thus possibly 
lead to lower signal values, potentially 
leading as well to a regime limited by 
readout complexity (energy and area) 
[9], which, in turn, scales in proportion 
to the number of bit cells involved. In 
this regime, the possible amortiza-
tion of readout complexity is limited, 
and IMC gains are thus strongly deter-
mined by the characteristics of the bit 
cells themselves. Therefore, a criti-
cal direction for such research is the 
codesign of IMC architectures with bit-
cell technology.

The readout complexity can have 
important implications on IMC den-
sity. Specifically, crossbar architec-
tures tend to impose more stringent 
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The IMC architecture is based on an array  
of six-transistor static random-access memory  
bit cells, and it includes periphery for 
two modes of operation.
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readout challenges (e.g., to manage 
possible interference between read-
out columns), making the readout-
circuit area significant and, again, 
scaling with array size. On the other 
hand, one-T, one-resistor (R) struc-
tures are typically denser than SRAM 
but now limited by MOSFET scaling. 
Further, the asymmetry in device 
characteristics between the T and 
R (memory device) often imposes 
additional area overheads to resolve 
(e.g., the use of two complementary 
bit cells).

An additional motivation for emerg-
ing resistive memory technologies is 
nonvolatility, which has the poten-
tial to lower power, especially in 
duty-cycled scenarios. This holds sig-
nificant promise but will need to be 
evaluated in application use cases. 
Additionally, nonvolatility often lim-
its the number of write cycles, posing 
challenges for hardware-virtualiza-
tion approaches.

Algorithmic Codesign
Machine-learning inference has emerged 
as one of the biggest drivers for IMC, 
both because the computations have 
driven platforms to their energy 
and throughput limits and because 
the computations are dominated by 
MVM, which limits the gains possible 
from digital accelerators. Interest-
ingly, machine-learning inference 
presents distinct opportunities for 

addressing the SNR tradeoff in IMC 
through algorithmic approaches. 
Machine-learning inference involves 
specifying a parametric model of 
how data statistically relate to infer-
ences (decisions) of interest and then 
training the model parameters using 
available data that are representative 
of the statistics. In this way, statis-
tical parameter optimization for a 
given model affords flexibility in the 
choice of actual model, which can 
be selected for computational effi-
ciency. For example, this aspect has 
been exploited toward aggressive 
quantization [2], which has already 
been shown to yield benefits for IMC. 
But it can also be exploited to over-
come computational noise arising 
from analog circuit nonidealities lim-
iting IMC.

Because the nonidealities can be 
statistical (e.g., variations) or determin-
istic (e.g., nonlinearity), a distinction 
can be made between hardware-spe-
cific training of model parameters 
and hardware-generalized training of 
model parameters. In hardware-spe-
cific training, the specific variation-
affected instance of hardware is used 
in the training process to tune param-
eters to the specific hardware [7], [19]. 

This has the drawback of incurring 
instance-by-instance training costs, 
and recent IMC demonstrations have 
explored incorporating the associated 
hardware support to minimize such 
costs [19]. In hardware-generalized 
training, a statistical model of the dis-
tribution of variation-affected hard-
ware is used in the training process 
to learn parameters one time [20]. 
This avoids the need for instance-
by-instance training. For the example 
shown in Figure 13 of MRAM-based 
IMC implementing a neural network 
for vision classification (CIFAR-10), we 
see that this can overcome significant 
variation in the hardware (accuracy is 
maintained at several multiples of the 
actual MRAM-conductance variation).

Such algorithmic approaches show 
considerable promise, presenting a 
rich area for research. Specifically, a 
critical challenge that will need to be 
addressed is that operation relying 
on algorithmic codesign will inher-
ently disrupt hierarchical abstraction 
based on the functional specifica-
tion employed in architectural design 
today. Thus, new, possibly statistical 
approaches to composable architec-
tural design and application mapping 
will likely be required.
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Instead of accessing raw bits row by row, IMC 
accesses a computation result over many/all bits, 
thereby amortizing the accessing costs.
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High-SNR Circuit Design
The SNR tradeoff underlying IMC ulti-
mately limits its computation scale, 
integration in complex architectures, 
and programmability. Recent work 
has thus proposed circuit approaches 
for enhancing computation SNR. Fig-
ure 14(a) shows the bit-cell circuit 
used in [11], where a 1-b input-vector 
element combines with 1-b of stored 
data to yield a 1-b multiplication out-
put, used to charge a local bit-cell 
capacitor rather than provide current 
on BL/BLb. Accumulation is then per-
formed by switched-capacitor charge 
redistribution across all the equal-
sized bit-cell capacitors in a column. 
Multiplication linearity is inherently 
ensured by binary bit-cell output, 
while accumulation error is primar-
ily set by capacitor mismatch. Thanks 
to lithographic precision in modern, 
very-large-scale integration technolo-
gies, the metal-finger capacitors used 
exhibit excellent matching and tem-
perature stability, with analysis sug-
gesting that the column dimension 
can be scaled to thousands of rows 
before mismatch limits computation 
SNR. Furthermore, the metal-finger 
capacitors are laid out above the bit-
cell Ts, occupying no additional area, 
such that the bit-cell area overhead 

with the required additional devices 
is just 80% compared to a standard 
6T-SRAM bit cell (laid out using logic 
rules). Figure 14(b) shows the mea-
sured column transfer function used 
to implement the preactivation of a 
binarized neuron with 4,608 inputs 
(i.e., column dimension), with error 
bars showing the standard devia-
tion over 512 on-chip neurons. The 
highly linear and stable computation 
achieved has enabled breakthrough 
scale for IMC of 2.4 Mb as well as 
demonstration of practical neural net-
works (e.g., 10 layers) with area-nor-
malized throughput of 1.5 1-b TOP/s/
mm2 and energy efficiency of 866 1-b 
TOP/s/W (the highest known for neu-
ral-network accelerators).

Programmable IMC
Having substantially addressed the  
underlying SNR tradeoff and demon-
strated increased scale, the capaci-
tor-based approach further enables 
integration in complex heterogeneous 
architectures and programmability. 
Figure 15(a) shows the architectural 
block diagram of a silicon prototype in 
65-nm CMOS, representing the current 
state of the art [12]. The architecture 
integrates a compute-in-memory unit 
(CIMU), with a CPU (RISC-V), direct-

memory accessing (DMA) unit, sched-
uling hardware (timers), interfaces 
[universal asynchronous receiver-
transmitter (UART) and general-pur-
pose input/output (GPIO)], and 128 kB 
of standard program and data mem-
ory. The CIMU extends the IMC hard-
ware from [11] in three key ways.

First, it introduces interfaces for 
efficiently converting data between 
the external 32-b architecture of 
the processor and the highly parallel 
bit-wise architecture of the IMC hard-
ware. This enables maximum band-
width utilization of the architectural 
resources (e.g., busses) for bringing 
data to/from the CIMU and enables its 
integration in the standard processor 
memory space. Such a tightly coupled 
IMC accelerator architecture is ben-
eficial for enhancing and evaluating 
programmability.

Second, it introduces column-output 
ADCs and configurable near-memory 
computing (NMC), physically aligned 
with IMC outputs, for element-wise 
computations on MVM output vectors. 
The architecture is designed for embed-
ded neural-network inference. Thus, 
the NMC supports operand scaling, off-
setting, shifting, averaging, masking, 
nonlinear transformation, and so on for 
computations such as activation func-
tions, batch normalization, and pool-
ing. This enables the demonstration 
and evaluation of integration of IMC in 
heterogenous architectures.

Third, it enables bit-scalable IMC  
from 1 to 8 b via a bit-parallel/bit-serial 
(BPBS) scheme. Here, multiple bits of 
the matrix elements are mapped to 
parallel columns, while multiple bits 
of the input-vector elements are pro-
vided serially. Each column opera-
tion thus corresponds to MAC (vector 
inner product) between binary vector 
elements. Following ADC digitiza-
tion, the column operations involved 
are then bit shifted to apply proper 
binary weighting and summed in the 
NMC to yield the multibit computation 
result. In this way, energy and area-
normalized throughput scale linearly 
with the number of matrix-element 
bits and vector-element bits, yielding 
more favorable scaling than typically 
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Recent approaches that have been proposed  
to harness/overcome the underlying  
tradeoffs suggest it will be a vital area  
for ongoing research.
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achieved with purely analog compu-
tation [21]. It should be noted that, 
with such computation, quantization 
is different than with that of stan-
dard integer compute. This is because 
the high column dimensionality (i.e., 
2,304) leads to higher dynamic range 

than that supported by the ADC (i.e., 
an 8-b ADC chosen to balance energy 
and area overheads). This repre-
sents another form of throughput/
energy tradeoff with SNR, in this case 
arising from computation (rather 
than communication) amortization. 

Nonetheless, for the quantization range 
of interest in neural-network applica-
tions (2–6 b), a signal-to-quantization 
noise ratio close to integer compute 
is achieved. Further, the determinis-
tic nature of the computation enables 
robust modeling, which can be readily 
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incorporated in neural network train-
ing, as is done for standard quantized 
neural-network training.

To validate and exploit the CIMU’s 
programmability, software librar-
ies have been developed for neural-
network training and inference, as 
shown in Figure 15(b). The training 
libraries are for domain-specific 
design frameworks (Keras and Ten-
sorFlow), providing a superclass for 
all supported neural-network lay-
ers. Arguments are offered for the 
activation and weight quantiza-
tion level as well as a flag to switch 
between integer quantization and 
the BPBS quantization performed by 
the CIMU. This enables training for 
the quantization approach adopted 
as well as evaluation against integer 
quantization (with equivalent perfor-
mance consistently observed thus 
far). The inference libraries are for 
two types of implementation. First, 
Python and MATLAB libraries are 
provided for implementing the top-
level data and control flow on a host 
processor, making function calls to 
the chip (over USB) for selected com-
pute-intensive operations (such as 
MVMs, activation functions, and batch 
normalization). Second, C libraries 
are provided for execution on the 
embedded CPU, for both receiving 
the function calls and implementing 
inference systems fully on the chip.

Conclusions and Summary
IMC has the potential to address a criti-
cal and foundational challenge affect-
ing computing platforms today—that 
is, the high energy and delay costs of 
moving data and accessing data from 
memory. In doing so, it takes a disrup-
tive approach to computing systems 
that requires integrative research 
across the computing stack. This 

has appropriately ignited a wide 
range of research. It is necessary to 
understand the foundational tradeoffs 
arising from IMC to better grasp the 
challenges that must be addressed 
and evaluate the different approaches 
being proposed. From here, perspec-
tives may be derived regarding the 
potential gains IMC can offer, the con-
texts and conditions on which these 
depend, and the support they require 
across the compute stack.

IMC gives rise to a bandwidth/
latency/energy-versus-SNR tradeoff, 
which has led to the achievements and 
limitations observed in recent proto-
types. These prototypes have shown 
the potential for 10× gains simultane-
ously in energy efficiency and area-
normalized throughput compared to 
fully optimized digital accelerators. 
But they have also been restricted in 
the scale and integration of IMC in the 
heterogeneous architectures required 
for practical computing systems. Re -
cent work has begun to address these 
restrictions, with IMC demonstra-
tions advancing to substantial scale, 
sophisticated and programmable 
architectures being developed, and 
software libraries being integrated 
into high-level application-design 
frameworks. These have transformed 
IMC into a practical technology for 
addressing foundational challenges 
in future computing systems, espe-
cially for energy- and throughput-
constrained machine learning.
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