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ABSTRACT
The confluence of the recent advances in technology and
the ever-growing demand for large-scale data analytics cre-
ated a renewed interest in a decades-old concept, processing-
in-memory (PIM). PIM, in general, may cover a very wide
spectrum of compute capabilities embedded in close prox-
imity to or even inside the memory array. In this paper,
we present an initial taxonomy for dividing PIM into two
broad categories: 1) Near-memory processing and 2) In-
memory processing. This paper highlights some interesting
work in each category and provides insights into the chal-
lenges and possible future directions.
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1. INTRODUCTION
The rapid explosion in data, while creating opportunities

for new discoveries, is also posing unprecedented demand for
computing capability to handle the ever-growing data vol-
ume, velocity, variety and veracity (also known as“four V ”),
from ubiquitous and networked devices to the warehouse-
scale computers [1]. As the traditional benefits for expand-
ing the processing capability of computers through technol-
ogy scaling has diminished with the end of Dennard scal-
ing, limitations in traditional compute system, also known
as “Memory Wall” [2] and “Power Wall” [3] are being out-
paced by the growth of Big Data to the point where a new
paradigm is needed.

As such, processing in memory (PIM), a decades-old con-
cept, has reignited interest among industry and academic
communities, largely driven by the recent advances in tech-
nology (e.g., die stacking, emerging nonvolatile memory) and
the ever-growing demand for large-scale data analytics. In
this paper, we classify the existing PIM work into two broad
categories: 1) near-memory processing (NMP) and 2) in-
memory processing (IMP). In the following sections, we will
present an overview of research progress on both types.
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Figure 1: Conceptual diagram of Near-Memory
Processing (NMP). Monolithic compute unit
(multi-core, vector unit, GPU, FPGA, CGRA,
ASIC etc.) are placed in close proximity to mono-
lithic memory.

2. NEAR-MEMORY PROCESSING
The first category of PIM is near-memory processing

(NMP). The underlying principle of NMP, as shown in Fig-
ure 1, is processing in proximity of memory – by physically
placing monolithic compute units (multi-core, GPU, FPGA,
ASIC, CGRA etc.) closer to monolithic memory – to mini-
mize data transfer cost.

The original idea of implementing this type of PIM dates
back to early 1990’s. Since then, there has been great in-
terest in the potential of integrating compute capabilities in
large DRAM memories. Multiple research teams built NMP
designs and prototypes, and confirmed speed-up in a range
of applications [4, 5, 6, 7, 8, 9, 10]. Among them, EXECUBE
[4], IRAM [5, 6], DIVA[7], FlexRAM[8] etc. are the repre-
sentative early proposals. However, the implementation of
NMP experienced great challenges in cost and manufactura-
bility. Therefore, even with great potentials, the concept of
NMP has never been embraced commercially in the early
days.

Nevertheless, the practicality concerns and cost limita-
tions of NMP are alleviated with recent advances in die-
stacking technology [11, 12, 13]. Several specialized NMP
systems were developed for important domains of applica-
tions [14, 15, 16, 17, 18, 19, 20]. In addition, advanced
memory modules such as Hybrid Memory Cube (HMC)[21],
High Bandwidth Memory (HBM) [22] and Bandwidth En-
gine (BE2)[23] have been developed by major memory ven-
dors and made their commercial success. For instance, HMC
that stacks multiple DRAM dies on top of a CMOS logic
layer using through-silicon-via (TSV) technology effectively
addressed the previous limitations of implementing NMP.
HMC not only provides much better random access per-
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formance compared to traditional DDR DRAM due to its
higher memory-level parallelism [2], but also supports near-
memory operations, such as read-modify-write, locking, etc.,
on the base logic layer, making it possible for accelerating
these operations near memory.

At UW-Madison, our research group was trying to under-
stand what an NMP computer architecture might entail by
combining the flexibility of modern FPGA with emerging
memory module, i.e. HMC. Our initial efforts are on un-
derstanding the needs of the driving applications for HMC
and developing collaborative software/ hardware techniques
for efficient algorithmic mapping. In particular, we demon-
strated the very first near-memory graph processing system
on a real FPGA-HMC platform based on software/hardware
co-design and co-optimization. The work aimed to tackle a
challenging problem in processing large-scale sparse graphs,
which have been broadly applied in a wide range of appli-
cations from machine learning to social science but are in-
herently difficult to process efficiently. It is not only due
to their large memory footprint, but also that most graph
algorithms entail memory access patterns with poor local-
ity and a low compute-to-memory access ratio. To address
these challenges, we leveraged the exceptional random ac-
cess performance of HMC technology combined with the
flexibility and efficiency of FPGA. A series of innovations
were applied, including new data structure/algorithm and
a platform-aware graph processing architecture. Our imple-
mentation achieved 166 million edges traversed per second
(MTEPS) using GRAPH500 benchmark on a random graph
with a scale of 25 and an edge factor of 16, which significantly
outperforms CPU and other FPGA-based graph processors.

In another project, we tackled the challenge from a differ-
ent angle. In particular, we demonstrated a high-performance
near-memory OpenCL-based FPGA accelerator for deep
learning. We applied a combination of theoretical and ex-
perimental approaches. Based on a comprehensive analy-
sis, we identified that the key performance bottleneck is the
on-chip memory bandwidth, largely due to the scarce mem-
ory resources in modern FPGA and the memory duplication
policy in current OpenCL execution model. We proposed a
new kernel design to effectively address such limitation and
achieved substantially improved memory utilization, which
further results in a balanced data-flow between computation,
on-chip, and off-chip memory access. We implemented our
design on an Altera Arria 10 GX1150 board and achieved
866 Gop/s floating point performance at 370MHz working
frequency and 1.79 Top/s 16-bit fixed-point performance at
385MHz. To the best of our knowledge, our implementation
achieves the best power efficiency and performance density
compared to existing work.

3. IN-MEMORY PROCESSING
In-memory processing (IMP), as the second category of

PIM, grew out of NMP from processing in proximity of mem-
ory to processing inside memory which seamlessly embeds
computation in memory array, as depicted in Figure 2. As
the compute units become more tightly coupled with mem-
ory, one can exploit more fine-grained parallelism for bet-
ter performance and energy efficiency. In this section, we
present the enabling technology for IMP and the exploratory
IMP architectures.

Technology: The last decade has seen significant progress
in emerging nonvolatile memory technologies (NVMs) in-

Figure 2: Conceptual diagram of In-Memory Pro-
cessing (IMP). Compute units are seamlessly em-
bedded into memory array to better exploit the
internal memory bandwidth.

cluding Spin Torque Transfer RAM (STT RAM)[24], phase
change memory (PCM)[25] and resistive RAM (RRAM)[26].
Until now, the key industry players have all demonstrated
Gb-scale capacity in advanced technology nodes, including
1Gb PCM at 45nm by Micron [27], 8Gb PCM at 20nm by
Samsung [28], 32Gb RRAM at 24nm by Toshiba/Sandisk
[29], 16Gb conductive bridge (CBRAM, a special type of
RRAM) at 27nm by Micron/Sony [30], and most recently
128Gb 3D XPoint technology by Micron/Intel [31].

Even with successful commercialization, the insertion of
these technologies to exiting computer systems as a direct
drop-in replacement turns out not being effective. The fun-
damental reasons for that are 1) Technically, the inherent
nature of these technologies does not align well with either
main memory or persistent storage in terms of cost-per-bit,
latency, power, endurance, and retention. 2) Economically,
besides more investment to existing memory manufacturing
facilities for producing these new technologies, it is diffi-
cult to convince end-users to switch to a new technology as
long as they can still use DRAM or Flash for the same pur-
pose, unless significant benefits are provided. Therefore, it
is challenging for any of the emerging NVMs to take over
the dominant mature market of DRAM or Flash. How-
ever, we envision that to enable a wide adoption of these
NVM technologies, a potentially viable path is to explore
non-traditional usage models or new paradigms beyond tra-
ditional memory applications, for instance, IMP. We believe
that the emerging NVMs will become an enabling technol-
ogy for IMP.

Architecture: The exploratory IMP architectures re-
ported in literature can be further divided into the several
types: 1) One type is to utilize the inherent dot-product ca-
pability of the crossbar structure to accelerate matrix mul-
tiplication, which is a key computational kernel in a wide
array of applications including deep learning, optimization,
etc. Representative work includes PRIME [32], ISAAC [8],
and memristive boltzmann machine [33]. By augmenting
RRAM crossbar design with various digital or analog cir-
cuits in the periphery, these architectures can realize dif-
ferent accelerator functions that are built atop matrix mul-
tiplication. 2) Another type is to implement a neuromor-
phic system, which exploits the analog nature of NVM ar-
ray to implement synaptic network in order to mimic the
fuzzy, fault-tolerant and stochastic computation of the hu-
man brain, without sacrificing its space or energy efficiency
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[8, 32, 34, 35]. 3) The third type is associative proces-
sor (AP), also known as nonvolatile Content addressable
memory (nv-CAM) or Ternary content addressable mem-
ory (nv-TCAM), which supports associative search to locate
data records by content rather than address. We demon-
strated the very first large-scale PCM TCAM chip and prove
the feasibility of implementing in-memory processing using
emerging NVM in a cost-effective manner. Other represen-
tative work includes RRAM-based TCAM [36], AC-DIMM
[37], and RRAM-based associative processor [38]. 4) The
fourth type is reconfigurable architecture (RA). Representa-
tive work includes nonvolatile field programmable gate ar-
ray (nv-FPGA [39, 40]) and reconfigurable in-memory com-
puting architecture that combines the best advantages of
TCAM and FPGA [41].

Both AP (Type-3) and RA (Type-4) show great promise in
implementing the concept of in-memory processing without
necessarily incurring high cost. Specifically, they do not
need expensive mixed-signal circuits (A/D, D/A) as Type-1
and Type-2 and thus, their adoption barrier is lower than
Type-1 and Type-2. However, all of these types need to
address a common challenge in operational robustness due to
the limited ON/OFF resistance ratio of NVM technologies
(except for CBRAM), which can be mitigated by advanced
material engineering [42], cell design [43, 44, 45], and coding
technique [46].

Among all the work, we would like to specifically high-
light an interesting reconfigurable in-memory computing ar-
chitecture (Type-4) developed by us. It shares some sim-
ilarities to FPGA in morphable data-flow architecture but
also radically differs from it by providing: 1) flexible on-
chip storage, 2) flexible routing resources, and 3) enhanced
hardware security. For the first time, it exploits a contin-
uum of IMP capabilities across the whole spectrum, ranging
from 0% (pure data storage) to 100% (pure compute engine),
or intermediate states in between (partial storage and par-
tial computation). Such superior programmability blurs the
boundary between computation and storage. We believe it
may open up rich research opportunities in driving new re-
configurable architecture, design tools, and developing new
data-intensive applications, which were not generally con-
sidered to be suitable for FPGA-like accelerations.

4. OTHER CHALLENGES
PIM, including both NMP and IMP, offers a promising ap-

proach to overcome the challenges posed by emerging data-
intensive applications. In our view, NMP has a relatively low
adoption barrier than IMP, as there is no need to change the
internal memory architecture, whereas IMP fully exploits
the internal memory bandwidth to achieve more parallelism.

To make NMP or IMP practically viable, there are other
challenges that need to be addressed, including virtual mem-
ory support to ensure a unified address space, memory/cache
coherence, fault tolerance, security and privacy, thermal and
power constraints, compatibility with modern programming
models, etc.. All of them will require collaborative efforts
between technologies, IC designers and system engineers.
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