
Parameterized Data Reduction Framework for IoT Devices
Chi-Sheng Shih1, Jyun-Jhe Chou1, Wei-Dean Wang2, and Kuo-Chin Huang3

1Graduate Institute of Networking and Multimedia, Department of Computer Science and Information Engineering, NTU IoX Research
Center, National Taiwan University

Email: cshih@csie.ntu.edu.tw
2Department of Medical Education and Bioethics, NTU

3Department of Family Medicine, NTU Hospital

Abstract— In a IoT environment, there are many devices
will periodically transmit data. However, most of the data are
useless, but sensor itself may not have a good standard to
decide transmit or not. Some static rule maybe useful on specific
scenario, and become useless when we change the usage of the
sensor. In this paper, we want to present a method to reduce
the file size of thermal sensor which can sense the temperature
of a surface and output a two dimension gray scale image. In
our evaluation result, we can reduce the file size to 50% less
than JPEG when there is 0.5% of distortion, and up to 93%
less when there is 2% of distortion.

I. INTRODUCTION

In a IoT environment, there are many devices will periodi-
cally transmit data. Some sensor is use for avoid accidents, so
they will have very high sensing frequency. However, most
of the data are useless. Like a temperature sensor on a gas
stove, the temperature value is the same as the value from air
conditioner and does not change very frequently, but it will
have dramatically difference when we are cooking. We can
simply make a threshold that when temperature is higher
or lower than some degrees, the data will be transmitted,
and drop the data that we don’t interest. This is a very easy
solution if we only have a few devices, but when we have
hundreds or thousands devices, it is impossible to manually
configure all devices, and the setting may need to change
in the winter and summer, or different location. Hence, a
framework to select useful data is important.

On Raspberry Pi 3, while it is idling and turning off WiFi,
it will consume 240mA and while uploading data at 24Mbit/s,
it will consume 400mA. If we sent 640 × 480 pixels heat
map images in png format (average 45KB) in 10Hz, it will
consume about 264mA.

In this paper, we study the data from Panasonic Grid-EYE,
a 8× 8 pixels infrared array sensor, and FLIR ONE PRO, a
480×640 pixels thermal camera. Both are setting on ceiling
and taking a video of a person walking under the camera.

Contribution The contribution of this work is to present
a framework for user to choose either the bit-rate or the error
rate of the video. By the method we proposed, the size of file
can reduce more than 50% compare to JPEG image when
both have 0.5%(0.18◦C) of root-mean-square error.

The remaining of this paper is organized as follow. Sec-
tion II presents related works and background for develop-
ing the methods. Section III presents the system architec-

ture, challenges, and the developed mechanisms. Section IV
presents the evaluation results of proposed mechanism and
Section V summaries our works.

II. BACKGROUND AND RELATED WORKS

A. Panasonic Grid-EYE Thermal Sensor

First, we study the sensor Panasonic Grid-EYE which is a
thermal camera that can output 8×8 pixels image with 2.5◦C
accuracy and 0.25 ◦ C resolution at 10 frames per second.
It is a low resolution camera and infrared array sensor, so
we install it in our house at ease without some privacy issue
that may cause by a surveillance camera.

When someone walks under a Grid-EYE sensor, we will
see some pixels with higher temperature than others. Figure 1
shows an example of image from Grid-EYE sensor.

Grid-EYE

Fig. 1. Walking under a Grid-EYE sensor

The data we used is from a solitary elder’s home. We
deployed four Grid-EYE sensor at the corner of her living
room, and recorded the thermal video for three weeks at 10
frames per second data rate.

B. Simple Data Compressing

If we save a frame in a readable format, it will take about
380 bytes storage. However, the temperature range of our
scenario mostly from 5◦C to 40◦C and the resolution is
0.25◦C, so we can easily represent each temperature by one
byte. Hence, we only need 64 bytes to store a frame. We
have try several ways to compress the frame.



1) Huffman Coding: Huffman coding is a lossless data
compressing. In average, it can reduce the frame size from
64 bytes to 40.7 bytes with 6 bytes standard deviation.

2) Z-score Threshold: We can only transmit the pixels
with higher temperature since thermal sensors are mostly
used for detect heat source. Z-score is define as z = χ−µ

σ ,
where χ is the value of the temperature, µ is the average of
the temperature and σ is the standard deviation of the temper-
ature. In our earlier work [Shih17b], we use Z-score instead
of a static threshold to detect human because the background
temperature may have a 10◦C difference between day and
night, and when people walk through the sensing area the
Grid-EYE, the temperature reading will only increase 2◦C
to 3◦C. Hence, it is impossible to use a static threshold to
detect human. In [Shih17b], we only use the pixels with the
Z-score higher than 2, so we can reduce the frame size from
64 bytes to 12.6 bytes with 2.9 bytes standard deviation by
Z-score threshold 2 and compress by Huffman coding.

3) Gaussian Function Fitting: In Figure 1, we can see
that the sensor value will be a cone shape. The pixel with
our head will have the highest temperature, body is lower,
and leg is the lowest except background because when the
distance from camera to our body is longer, the area cover
by the camera will be wider and the ratio of background
temperature in the pixel will increase. A Gaussian function
y = Ae−(x−B)2/2C2

has three parameter A,BandC. The
parameter A is the height of the cone, B is the position of
the cone’s peak and C controls the width of the cone. We
let the pixel with highest temperature be the peak of the
cone, so we only need to adjust AandC to fit the image.
Guo [guo2011simple] provide a fast way to get the fitting
Gaussian function. In our testing, it will be about 0.5◦C
root-mean-square error, and only needs 5 bytes to store the
position of peak and two parameters.

C. FLIR ONE PRO

FLIR ONE PRO can output a 480 × 640 pixels image
with 3◦C accuracy and 0.01◦C resolution, and capture video
at about 5 FPS. In picture taking mode, it can retrieve the
precise data from the header of picture file. However, in the
video taking mode, it only store a gray scale video and show
the range of temperature on the monitor. Hence, we use ◦C
in picture mode, and gray scale value as the unit to analyze
error rate. Since FLIR ONE PRO can offer a image with
about 5000 times number of pixels compare to Grid-EYE. It
cannot simply use a Gaussian function to fit it. Hence, we
developed a method to compress FLIR images. It can also
treat as a normal image and be stored as jpeg, png, etc.

III. DATA SIZE DECISION FRAMEWORK

This section presents the proposed method to outcome a
data array than have less size compare to jpeg image when
we can tolerate some error of data.

A. Heuristic Data Resolution Determination

For each frame, we can use a context-free language to
represent it.

S → R
R→ α
R→ βRRRR

R means a region of image, and it can either use the
average α of the pixels in the region to represent whole
region or separate into four regions and left a remainder β.
Dependence on the image size we desired, we can choose the
amount of separating regions. The context-free grammar start
from a region contain whole image. For each R we calculate
a heuristic value h which is based on the quality of data we
can improve by separate it in to smaller regions. After some
operation, we can encode the image into a string ω. One of
the possible outcome is β1β2α1α2α3α4α5α6β3α7α8α9β4α10α11α12α13.
Figure 2 shows how the image is separated into several re-
gions. By this method, we can continuously separate regions
until the file size excess our requirement or the error rate
less than a threshold.

?4

?1

?7

?10

?13

?2

?3

?5

?6

?8

?9

?11

?12

Fig. 2. Region separate by CFG

The heuristic function in the proposed method is the sum
of squared error of the pixels in the region. We have also try
to use the total squared error it can reduce as the heuristic
function, but it will easily get stuck at a local minimum.

B. Data Structure and Region Selection Algorithm

We use the sum of squared error of pixels in the region
when we use the average of them to replace them as the
heuristic value. In order to reduce the heuristic value’s cal-
culating time, we design a four dimension segment tree to
preprocess all possible regions. For each node, it store the
range on both width and height it covered, mean E[X], and
squared mean E[X2] of pixels in the region. By the property
of segment tree, tree root start from 0, and each node Xi has
four child Xi×4+1, Xi×4+2, Xi×4+3 and Xi×4+4. Hence, we
only need to allocate an large array and recursively process



all nodes form root. Algorithm 1 shows how we generate the
tree.

For region selection, we use a priority queue to retrieve the
region of considerate regions with highest value. The priority
queue start with only root of the segment tree. For each round
the priority queue pop the item with highest value and push
all its child in to the queue. Algorithm 2 shows how we select
a region by the priority queue. After the selection finished,
we will generate the data string to be sent. The regions in
seperatedRegions will be β and others in PriorityQueue
will be the average value, and then compress the string by
Huffman Coding.

IV. PERFORMANCE EVALUATION

To evaluate the effectiveness of the proposed method, we
do the different ratios of compressing on a thermal image by
our method compare to JPEG image using different quality
and png image, a lossless bit map image. We set the camera
at the ceiling and view direction is perpendicular to the
ground, and the image size is 480 × 640 pixels. Figure 3
shows an example of image which was took by FLIR ONE
PRO. The JPEG image is generated by OpenCV 3.3.0, and
image quality from 1 to 99.

Fig. 3. PNG image, size = 46KB

Figure 4 and Figure 5 show the different of JPEG and our
method. JPEG image id generated by image quality level
3, and image of our method does 1390 rounds of separate
and compressed by Huffman Coding. In this case, Huffman
Coding can reduce 39% of our image size.

Figure ?? shows that the size of file can reduce more than
50% compare to JPEG image when both have 0.5%(0.18◦C)
of root-mean-square error. Our method has 82% less error
rate when both size are 4KB image. The percentage of file
size is compare to PNG image.

V. CONCLUSION

In this paper we present the design to reduce the data size
of a two dimension thermal image. By using the property

Fig. 4. 4KB Image by Proposed Method

Fig. 5. 4KB Image by JPEG

that thermal image is gray scale and nearby pixels are have
similar value, we can use the average value to stand for whole
region. By giving every regions different resolutions, we can
reduce the file size to 50% less than JPEG when there is
0.5% of distortion, and up to 93% less when there is 2%
of distortion. Acknowledgements This research was sup-
ported in part by the Ministry of Science and Technology of
Taiwan (MOST 106-2633-E-002-001, MOST 106-2627-M-
002-022-), National Taiwan University (NTU-106R104045),
Intel Corporation, and Delta Electronics, and Advantech.



Algorithm 1 Segment Tree Preprocess
1: Tree = Array()
2: function SETTREENODE(x, left, right, top, bottom)
3: if left = right top = bottom then
4: Tree[x].Sum = Image[left][top]
5: Tree[x].SquareSum = Image[left][top]2

6: else
7: setTreeNode(4x+ 1, left, (left+ right)/2, top, (top+ bottom)/2)
8: setTreeNode(4x+ 2, (left+ right)/2, right, top, (top+ bottom)/2)
9: setTreeNode(4x+ 3, left, (left+ right)/2, (top+ bottom)/2, bottom)

10: setTreeNode(4x+ 4, (left+ right)/2, right, (top+ bottom)/2, bottom)

11: Tree[x].Sum =
4x+4∑
i=4x+1

Tree[i].sum

12: Tree[x].SquareSum =
4x+4∑
i=4x+1

Tree[i].SquareSum

13: Tree[x].SquaredError = Tree[x].SquareSum− Tree[x].Sum2

(right−left+1)×(bottom−top+1)

14: setTreeNode(0, 0, Image.Width, 0, Image.Height)

Algorithm 2 Region Selection
1: seperatedRegions = Array()
2: PriorityQueue = Heap()
3: PriorityQueue.Push(Tree[0].SquaredError, 0)
4: for
5: i = 0..SeperateRounds do
6: value, x = PriorityQueue.Pop()
7: seperatedRegions.push(x)
8: PriorityQueue.Push(Tree[4x+ 1].SquaredError, 4x+ 1)
9: PriorityQueue.Push(Tree[4x+ 2].SquaredError, 4x+ 2)

10: PriorityQueue.Push(Tree[4x+ 3].SquaredError, 4x+ 3)
11: PriorityQueue.Push(Tree[4x+ 4].SquaredError, 4x+ 4)




