555
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

295 lines
12 KiB

import serial
import threading
import time
class Frame():
def __init__(self, time, data):
self.time = time
self.data = data
class GridEye():
def __init__(self, serialPort, baudrate):
self.port = serial.Serial(serialPort, baudrate)
self.frame1 = None
self.frame2 = None
self.reading = True
self.distance = -1
self.thread = threading.Thread(target = self.reader)
self.thread.setDaemon(True)
self.lock = threading.Lock()
def start(self):
self.port.reset_input_buffer()
self.thread.start()
def stop(self):
self.reading = False
self.thread.join()
def reader(self):
while (self.reading):
line = b''
while (self.reading):
c = self.port.read()
if c == b'\n':
break
line += c
#line = self.port.readline()#.decode('utf-8')
# if line:
# print (line)
# time.sleep(0.01)
# if self.port.in_waiting > 0:
# print (self.port.in_waiting)
if b':' in line:
try:
tag = line.decode('utf-8').split(':')[0]
if 'Distance' in tag:
dist = float(line.decode('utf-8').split(':')[1])
if dist > 200.0:
dist = 200.0
self.lock.acquire()
self.distance = dist
self.lock.release()
else:
values = [int(x, 16)*0.25 for x in line.decode('utf-8').split(':')[1].split()]
if len(values) == 64:
#print (data)
data = []
for i in range(8):
data.append(values[i*8:i*8+8])
self.lock.acquire()
if '105' in tag:
self.frame1 = Frame(time.time(), data)
else:
self.frame2 = Frame(time.time(), data)
self.lock.release()
else:
print ('something wrong', len(data))
except Exception as e:
print (e)
if __name__ == '__main__':
import cv2
import numpy as np
import math
import json
def exponential(img, value):
tmp = cv2.pow(img.astype(np.double), value)*(255.0/(255.0**value))
return tmp.astype(np.uint8)
SIZE = 128
AVERAGE_FRAME = 10
distanceBetweenSensors_w = 2.6 #cm
distanceBetweenSensors_h = 2.6 #cm
distance2Object = 60.0 #cm
ADJUST_BACK = 5
EXPONENTAL_VALUE = 0.4
PRODUCTION_THRESHOLD = 100
MIN_EXIST_TIME = 0.5
W_ARRAY = np.array([list(range(SIZE*2)) for x in range(SIZE*2)])
H_ARRAY = np.array([[x]*(SIZE*2) for x in range(SIZE*2)])
grideye = GridEye('COM18', 115200)
grideye.start()
grideye2 = GridEye('COM24', 115200)
grideye2.start()
# distanceSensor = Distance('COM18', 9600)
# distanceSensor.start()
fourcc = cv2.VideoWriter_fourcc(*'XVID')
videoWriter = cv2.VideoWriter('output.avi', fourcc, 10.0, (SIZE*4,SIZE*4))
siftVideoWriter = cv2.VideoWriter('sift.avi', fourcc, 10.0, (SIZE*2,SIZE*1))
cv2.imshow('sample', np.zeros((SIZE*3,SIZE*2), np.uint8))
cnt = 0
avers = []
hasPos = False
endTime = 0
startTime = 0
while True:
if grideye.frame1 and grideye.frame2 and grideye2.frame1 and grideye2.frame2:
grideye.lock.acquire()
grideye2.lock.acquire()
frames = [grideye.frame1, grideye.frame2, grideye2.frame1, grideye2.frame2]
grideye.frame1 = None
grideye.frame2 = None
grideye2.frame1 = None
grideye2.frame2 = None
distance2Object = grideye.distance + grideye2.distance + 1
print (distance2Object)
if distance2Object <= 0:
distance2Object = 200
grideye2.lock.release()
grideye.lock.release()
with open('log.txt', 'a') as f:
f.write(json.dumps(frames[0].time)+'\n')
for frame in frames:
f.write(json.dumps(frame.data)+'\n')
#print (json.dumps(frames))
imgs = []
for frame in frames:
img = (np.array(frame.data)-15)*10
img = cv2.resize(img.astype(np.uint8), (SIZE,SIZE), interpolation = cv2.INTER_LINEAR) # INTER_LINEAR, INTER_CUBIC
imgs.append(img)
avers.append(np.zeros((SIZE,SIZE), np.uint16))
if cnt < AVERAGE_FRAME:
cnt += 1
for i in range(len(imgs)):
avers[i] += imgs[i]
if cnt == AVERAGE_FRAME:
for i in range(len(avers)):
avers[i] = avers[i]/AVERAGE_FRAME
avers[i] = avers[i].astype(np.uint8)
avers[i] += ADJUST_BACK
continue
for i in range(len(imgs)):
imgs[i] = cv2.subtract(imgs[i], avers[i])
print ('xdd')
out = np.full((SIZE*4, SIZE*4), 255, dtype=np.uint16)
out[:SIZE, :SIZE] = imgs[0]
out[:SIZE, SIZE:SIZE*2] = imgs[1]
out[SIZE:SIZE*2, :SIZE] = imgs[2]
out[SIZE:SIZE*2, SIZE:SIZE*2] = imgs[3]
'''
try:
overlap_w = int(SIZE - (distanceBetweenSensors_w / (2*distance2Object*math.tan(30.0/180.0*math.pi))) * SIZE)
except:
overlap_w = 0
if overlap_w < 0:
overlap_w = 0
try:
overlap_h = int(SIZE - (distanceBetweenSensors_h / (2*distance2Object*math.tan(30.0/180.0*math.pi))) * SIZE)
except:
overlap_h = 0
if overlap_h < 0:
overlap_h = 0
tmp = np.zeros((SIZE, SIZE*2-overlap_w), dtype=np.uint16)
tmp[:, :SIZE] = imgs[0]
tmp[:, -SIZE:] += imgs[1]
tmp[:, (SIZE-overlap_w): SIZE] = tmp[:, (SIZE-overlap_w): SIZE]/2
tmp2 = np.zeros((SIZE, SIZE*2-overlap_w), dtype=np.uint16)
tmp2[:, :SIZE] = imgs[2]
tmp2[:, -SIZE:] += imgs[3]
tmp2[:, (SIZE-overlap_w): SIZE] = tmp2[:, (SIZE-overlap_w): SIZE]/2
merge = np.zeros((SIZE*2-overlap_h, SIZE*2-overlap_w), dtype=np.uint16)
merge[:SIZE, :] = tmp
merge[-SIZE:, :] += tmp2
merge[(SIZE-overlap_h):SIZE, :] = merge[(SIZE-overlap_h):SIZE, :]/2
# merge = exponential(merge, EXPONENTAL_VALUE)
offset_w = int(overlap_w/2)
offset_h = int(overlap_h/2)
print (SIZE*2+offset_h, SIZE*4-overlap_h+offset_h, offset_w, SIZE*2-overlap_w+offset_w)
out[SIZE*2+offset_h:SIZE*4-overlap_h+offset_h, offset_w: SIZE*2-overlap_w+offset_w] = merge
maxProduct = 0
overlap_w = 0
for i in range(80, 128):
product = sum(imgs[0][:,SIZE-i:].astype(np.uint32)*imgs[1][:,:i].astype(np.uint32))
product += sum(imgs[2][:,SIZE-i:].astype(np.uint32)*imgs[3][:,:i].astype(np.uint32))
product = sum(product) / len(product)
if product > maxProduct:
maxProduct = product
overlap_w = i
tmp = maxProduct
maxProduct = 0
overlap_h = 0
for i in range(80, 128):
product = sum(imgs[0][SIZE-i:, :].astype(np.uint32)*imgs[2][:i,:].astype(np.uint32))
product += sum(imgs[1][SIZE-i:, :].astype(np.uint32)*imgs[3][:i,:].astype(np.uint32))
product = sum(product) / len(product)
if product > maxProduct:
maxProduct = product
overlap_h = i
maxProduct = (tmp + maxProduct)/2
tmp = np.zeros((SIZE, SIZE*2-overlap_w), dtype=np.uint16)
tmp[:, :SIZE] = imgs[0]
tmp[:, -SIZE:] += imgs[1]
tmp[:, (SIZE-overlap_w): SIZE] = tmp[:, (SIZE-overlap_w): SIZE]/2
tmp2 = np.zeros((SIZE, SIZE*2-overlap_w), dtype=np.uint16)
tmp2[:, :SIZE] = imgs[2]
tmp2[:, -SIZE:] += imgs[3]
tmp2[:, (SIZE-overlap_w): SIZE] = tmp2[:, (SIZE-overlap_w): SIZE]/2
merge = np.zeros((SIZE*2-overlap_h, SIZE*2-overlap_w), dtype=np.uint16)
merge[:SIZE, :] = tmp
merge[-SIZE:, :] += tmp2
merge[(SIZE-overlap_h):SIZE, :] = merge[(SIZE-overlap_h):SIZE, :]/2
offset_w = int(overlap_w/2)
offset_h = int(overlap_h/2)
out[SIZE*2+offset_h:SIZE*4-overlap_h+offset_h, SIZE*2+offset_w: SIZE*4-overlap_w+offset_w] = merge
'''
# offset = int(overlap2/2)
# tmp = np.zeros((SIZE, SIZE*2-overlap2), dtype=np.uint16)
# tmp[:, :SIZE] = img
# tmp[:, -SIZE:] += img2
# tmp[:, (SIZE-overlap2): SIZE] = tmp[:, (SIZE-overlap2): SIZE]/2
# tmp = exponential(tmp, EXPONENTAL_VALUE)
# out[SIZE*2:, offset: SIZE*2-overlap2+offset] = tmp
out = out.astype(np.uint8)
out = exponential(out, EXPONENTAL_VALUE)
out = cv2.cvtColor(out,cv2.COLOR_GRAY2BGR)
if False and maxProduct > PRODUCTION_THRESHOLD:
print ('XDDDD',maxProduct)
position = [0,0]
rows,cols = merge.shape
position[0] = sum(sum(H_ARRAY[:rows,:cols]*merge))/sum(sum(merge))
position[1] = sum(sum(W_ARRAY[:rows,:cols]*merge))/sum(sum(merge))
pos_w = distanceBetweenSensors_w/(SIZE-overlap_w)*position[0]
pos_h = distanceBetweenSensors_h/(SIZE-overlap_h)*position[1]
cv2.circle(out, (SIZE*2+offset_w+int(position[1]), SIZE*2+offset_h+int(position[0])), 10, (255,0,0), 5)
if not hasPos:
startPos = [pos_w, pos_h]
startTime = frames[0].time
hasPos = True
endPos = [pos_w, pos_h]
endTime = frames[0].time
elif hasPos:
if endTime - startTime > MIN_EXIST_TIME:
print (startPos, endPos)
print ('speed:', ((endPos[0]-startPos[0])**2+(endPos[1]-startPos[1])**2)**0.5/(endTime - startTime))
print ('time:', endTime-startTime)
hasPos = False
if endTime - startTime > MIN_EXIST_TIME:
speed = ((endPos[0]-startPos[0])**2+(endPos[1]-startPos[1])**2)**0.5/(endTime - startTime)
cv2.putText(out, f'{speed:.2f}',
(0, SIZE*2),cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)
cv2.imshow('sample', out)
videoWriter.write(out)
key = cv2.waitKey(1)
if key == ord('q'):
break
elif key == ord('c'):
cv2.imwrite('out.jpg', out)
with open('log_captured.txt', 'a') as f:
f.write(json.dumps(frames[0].time)+'\n')
for frame in frames:
f.write(json.dumps(frame.data)+'\n')
time.sleep(0.001)
grideye.stop()
videoWriter.release()
siftVideoWriter.release()
cv2.destroyAllWindows()