555
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

247 lines
10 KiB

import json
class Frame():
def __init__(self, time, data):
self.time = time
self.data = data
class GridEyeData():
def __init__(self, filePath):
self.f = open(filePath, 'r')
self.frames = [None]*4
def readFrame(self):
time = self.f.readline()
if not time:
return False
time = float(time)
for i in range(4):
data = json.loads(self.f.readline())
self.frames[i] = Frame(time, data)
return True
if __name__ == '__main__':
import cv2
import numpy as np
import sys
from functools import reduce
def exponential(img, value):
tmp = cv2.pow(img.astype(np.double), value)*(255.0/(255.0**value))
return tmp.astype(np.uint8)
SIZE = 128
AVERAGE_FRAME = 10
distanceBetweenSensors_w = 2.6 #cm
distanceBetweenSensors_h = 2.6 #cm
distance2Object = 60.0 #cm
ADJUST_BACK = 5
EXPONENTAL_VALUE = 0.4
PRODUCTION_THRESHOLD = 10
MIN_EXIST_TIME = 0.1
cnt = 0
avers = []
raw_aver = np.array([0]*64*4, np.float64)
raw_aver2 = np.array([0]*64*4, np.float64)
fourcc = cv2.VideoWriter_fourcc(*'XVID')
videoWriter = cv2.VideoWriter('output.avi', fourcc, 10.0, (SIZE*2,SIZE*4))
cv2.imshow('sample', np.zeros((SIZE*4,SIZE*2), np.uint8))
gridEye = GridEyeData(sys.argv[1])
hasLastFrame = False
hasPos = False
innerHasPos = False
endTime = 0
startTime = 0
innerEndTime = 0
innerStartTime = 0
path = []
speed = 0
avers.append(np.zeros((SIZE,SIZE), np.uint16))
avers.append(np.zeros((SIZE,SIZE), np.uint16))
avers.append(np.zeros((SIZE,SIZE), np.uint16))
avers.append(np.zeros((SIZE,SIZE), np.uint16))
while gridEye.readFrame():
frames = gridEye.frames
imgs = []
raw = []
for frame in frames:
img = (np.array(frame.data)-15)*10
img = cv2.resize(img.astype(np.uint8), (SIZE,SIZE), interpolation = cv2.INTER_LINEAR) # INTER_LINEAR, INTER_CUBIC
imgs.append(img)
raw += reduce(lambda x,y: x+y, frame.data)
raw_aver += np.array(raw)
raw_aver2 += np.array(raw)**2
if cnt < AVERAGE_FRAME:
cnt += 1
for i in range(len(imgs)):
avers[i] += imgs[i]
if cnt == AVERAGE_FRAME:
b = (raw_aver/AVERAGE_FRAME)**2
a = raw_aver2/AVERAGE_FRAME
print ('aver', raw_aver/AVERAGE_FRAME)
print ((a-b)**0.5)
print (sum((a-b)**0.5)/64/4)
exit()
for i in range(len(avers)):
avers[i] = avers[i]/AVERAGE_FRAME
avers[i] = avers[i].astype(np.uint8)
avers[i] += ADJUST_BACK
continue
for i in range(len(imgs)):
imgs[i] = cv2.subtract(imgs[i], avers[i])
out = np.full((SIZE*4, SIZE*2), 255, dtype=np.uint16)
out[:SIZE, :SIZE] = imgs[0]
out[:SIZE, SIZE:SIZE*2] = imgs[1]
out[SIZE:SIZE*2, :SIZE] = imgs[2]
out[SIZE:SIZE*2, SIZE:SIZE*2] = imgs[3]
# production
'''
maxProduct = 0
overlap_w = 0
for i in range(80, 128):
product = sum(imgs[0][:,SIZE-i:].astype(np.uint32)*imgs[1][:,:i].astype(np.uint32))
product += sum(imgs[2][:,SIZE-i:].astype(np.uint32)*imgs[3][:,:i].astype(np.uint32))
product = sum(product) / len(product)
if product > maxProduct:
maxProduct = product
overlap_w = i
tmp = maxProduct
maxProduct = 0
overlap_h = 0
for i in range(80, 128):
product = sum(imgs[0][SIZE-i:, :].astype(np.uint32)*imgs[2][:i,:].astype(np.uint32))
product += sum(imgs[1][SIZE-i:, :].astype(np.uint32)*imgs[3][:i,:].astype(np.uint32))
product = sum(product) / len(product)
if product > maxProduct:
maxProduct = product
overlap_h = i
maxProduct = (tmp + maxProduct)/2
# fixed overlap_h
'''
maxProduct = 0
overlaps = 125
overlap_w = overlaps
overlap_h = overlaps
'''
product = sum(imgs[0][:,SIZE-overlaps:].astype(np.uint32)*imgs[1][:,:overlaps].astype(np.uint32))
product += sum(imgs[2][:,SIZE-overlaps:].astype(np.uint32)*imgs[3][:,:overlaps].astype(np.uint32))
product = sum(product) / len(product)
maxProduct = product
tmp = maxProduct
maxProduct = 0
product = sum(imgs[0][SIZE-overlaps:, :].astype(np.uint32)*imgs[2][:overlaps,:].astype(np.uint32))
product += sum(imgs[1][SIZE-overlaps:, :].astype(np.uint32)*imgs[3][:overlaps,:].astype(np.uint32))
product = sum(product) / len(product)
maxProduct = product
maxProduct = (tmp + maxProduct)/2
'''
#if maxProduct > PRODUCTION_THRESHOLD:
if True:
tmp = np.zeros((SIZE, SIZE*2-overlap_w), dtype=np.uint16)
tmp[:, :SIZE] = imgs[0]
tmp[:, -SIZE:] += imgs[1]
tmp[:, (SIZE-overlap_w): SIZE] = tmp[:, (SIZE-overlap_w): SIZE]/2
tmp2 = np.zeros((SIZE, SIZE*2-overlap_w), dtype=np.uint16)
tmp2[:, :SIZE] = imgs[2]
tmp2[:, -SIZE:] += imgs[3]
tmp2[:, (SIZE-overlap_w): SIZE] = tmp2[:, (SIZE-overlap_w): SIZE]/2
merge = np.zeros((SIZE*2-overlap_h, SIZE*2-overlap_w), dtype=np.uint16)
merge[:SIZE, :] = tmp
merge[-SIZE:, :] += tmp2
merge[(SIZE-overlap_h):SIZE, :] = merge[(SIZE-overlap_h):SIZE, :]/2
offset_w = int(overlap_w/2)
offset_h = int(overlap_h/2)
out[SIZE*2+offset_h:SIZE*4-overlap_h+offset_h, offset_w: SIZE*2-overlap_w+offset_w] = merge
'''
position = [0,0]
rows,cols = merge.shape
for i in range(rows):
for j in range(cols):
position[0] += i*merge[i][j]
position[1] += j*merge[i][j]
position[0] /= sum(sum(merge))
position[1] /= sum(sum(merge))
pos_w = 1.17*position[0] #distanceBetweenSensors_w/(SIZE-overlap_w)*position[0]
pos_h = 1.17*position[1] #distanceBetweenSensors_h/(SIZE-overlap_h)*position[1]
if not hasPos:
startPos = [pos_w, pos_h]
sp = position
path = []
truePath = []
times = []
startTime = frames[0].time
hasPos = True
if not innerHasPos and pos_w >= 16 and pos_w <= 109 and pos_h >= 16 and pos_h <= 109:
innerStartPos = [pos_w, pos_h]
innerStartTime = frames[0].time
innerHasPos = True
if pos_w >= 16 and pos_w <= 109 and pos_h >= 16 and pos_h <= 109:
innerEndPos = [pos_w, pos_h]
innerEndTime = frames[0].time
elif innerHasPos:
if innerEndTime - innerStartTime > 0:
print (innerStartPos, innerEndPos)
print ('inner speed:', ((innerEndPos[0]-innerStartPos[0])**2+(innerEndPos[1]-innerStartPos[1])**2)**0.5/(innerEndTime - innerStartTime))
print ('time:', innerEndTime-innerStartTime)
innerHasPos = False
endPos = [pos_w, pos_h]
endTime = frames[0].time
path.append(position)
truePath.append(endPos)
times.append(frames[0].time)
'''
elif hasPos:
if endTime - startTime > 0:
print (startPos, endPos)
print ('speed:', ((endPos[0]-startPos[0])**2+(endPos[1]-startPos[1])**2)**0.5/(endTime - startTime))
print ('time:', endTime-startTime)
if innerHasPos and innerEndTime - innerStartTime > 0:
print (innerStartPos, innerEndPos)
print ('inner speed:', ((innerEndPos[0]-innerStartPos[0])**2+(innerEndPos[1]-innerStartPos[1])**2)**0.5/(innerEndTime - innerStartTime))
print ('time:', innerEndTime-innerStartTime)
hasPos = False
innerHasPos = False
out = out.astype(np.uint8)
out = exponential(out, EXPONENTAL_VALUE)
out = cv2.cvtColor(out,cv2.COLOR_GRAY2BGR)
'''
if endTime - startTime > MIN_EXIST_TIME:
speed = ((endPos[0]-startPos[0])**2+(endPos[1]-startPos[1])**2)**0.5/(endTime - startTime)
cv2.putText(out, f'{speed:.2f}',
(0, SIZE*2),cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)
speed = ((truePath[-1][0]-truePath[-2][0])**2+(truePath[-1][1]-truePath[-2][1])**2)**0.5/(times[-1] - times[-2])
cv2.putText(out, f'{speed:.2f}',
(0, SIZE*2+30),cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)
if maxProduct > PRODUCTION_THRESHOLD:
cv2.circle(out, (offset_w+int(position[1]), SIZE*2+offset_h+int(position[0])), 10, (255,0,0), 5)
cv2.circle(out, (offset_w+int(sp[1]), SIZE*2+offset_h+int(sp[0])), 10, (0,255,0), 5)
for i in range(len(path)-1):
cv2.line(out, (offset_w+int(path[i][1]), SIZE*2+offset_h+int(path[i][0])), (offset_w+int(path[i+1][1]), SIZE*2+offset_h+int(path[i+1][0])), (0,0,255))
cv2.line
lastFrame = out[SIZE*2:,:]
hasLastFrame = True
elif hasLastFrame:
out[SIZE*2:,:] = lastFrame
'''
cv2.imshow('sample', out)
videoWriter.write(out)
key = cv2.waitKey(1)
if key == ord('q'):
break
videoWriter.release()
cv2.destroyAllWindows()